
1
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Black Box Software Testing
Spring 2005
REGRESSION TESTING
by
Cem Kaner, J.D., Ph.D.
Professor of Software Engineering
Florida Institute of Technology
and
James Bach
Principal, Satisfice Inc.

Copyright (c) Cem Kaner & James Bach, 2000-2005
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

These notes are partially based on research that was supported by NSF Grant EIA-0113539
ITR/SY+PE: "Improving the Education of Software Testers." Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

2
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Good regression testing gives

clients confidence that they

can change the product (or

product environment).

3
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Why use regression tests?
• Manage risks of change:

(a) a bug fix didn’t fix the bug or
(b) the fix (or other change) had a side effect or
(c) error in the build process
(d) faulty localization

• Conform to expectations of clients or regulators
• Conform to a misguided notion of “scientific” practice

– Replicability is an important attribute of experiments because it lets us:
• cross-check each other’s work
• obtain a result as needed for application, and
• re-examine an experiment in the face of a new theory

– Replicability is important.
• Repetition may or may not have much value.

• Conform to a faulty analogy to manufacturing
– Software quality is not about making many identical instances of the

same widget, within the tightest achievable tolerances

4
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Managing risks of change
(a) a bug fix didn’t fix the bug

– Bug regression (Show a bug was not fixed)
(b) the fix (or other change) had a side effect

– Old fix regression (Show an old bug fix was broken) Programmers
refactor their code to reduce this risk.

– General functional regression (Show that a change caused a working
area to break.)

– Unit-level regression (Discover changes while fixing the bugs)
(c) error in the build process

– Build verification testing (Smoke tests have little power but much
breadth. The question is whether the build is fit to test). Programmers use
source and version control to reduce this risk.

(d) faulty localization
– Localization testing (Determine whether a product has been properly

adapted to the language and culture of a specific locale or market.)

5
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Repeat testing after changes

The essence of regression testing is repetition of
tests after changes. But if you scratch the surface, you
find several fundamentally different visions.
– Procedural: Run the same tests again in the same ways

• Delegation of labor: Welcome to the factory
• Reuse good tests: Two visions of power (of tests)
• Acts of faith: We do it because (… it’s

scientific…?)
– Economical: Repeat tests because (when, if) they’re cheap
– Support refactoring: Help the programmer discover

implications of her code changes.
– Risk-oriented: Expose errors caused by change

• Which
tests
repeat?

• How
similar to
the
previous
ones?

• Why?

6
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Automating GUI regression

Automated GUI regression is classic procedural regression.

And the most commonly discussed approach to test
automation :

1. create a test case
2. run it and inspect the output
3. if the program fails, report a bug and try again later
4. if the program passes the test, save the resulting outputs
5. in future tests, run the program and compare the output to the

saved results. Report an exception whenever the current output
and the saved output don’t match.

7
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Procedural regression:
Reusing good tests

• It makes sense to reuse old tests that were carefully crafted.
• Does that mean that regression tests are repetitions of good

tests?
– Any test, designed from any other perspective, can be turned into

a regression test.
Just document and / or automate it

And reuse it
• But what if you create good tests?

– Should they become regression tests?

8
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Procedural regression:
Reusing good tests

• The key design issue for regression tests as regression tests is
the expectation of reusability.

• Long term reusability requires maintainability
– Does that imply simplicity?

• If so, does that imply that we should prefer smoke tests to
scenario tests? (Some people think so…)

• But complex tests that use a lot of features of the program
and enter a lot of data are the ones that might be the most
beneficial to automate because this saves so much data
entry time and spares use the nuisance of data entry
mistakes accidentally made by the tester who is trying to
perform the test by hand.

– I think the need for maintainability implies a need for architectural
support for strong tests, not a push for weak ones.

9
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Reusing good tests

• If power refers to the ability of a test to detect a bug if it is there, then
a test can be powerful even if the program has passed it so often that
we are almost certain that bug will never appear.

• On the other hand,
– The probability of finding a bug with a regression test that the program

has already passed is very low
– Estimates from LAWST:

About 15% of the bugs found in a project are found by its
regression tests. (Obviously, there’s a lot of variation.)
However, companies spend as much as 80% of their testing
budget on regression testing (development and, especially,
maintenance of the tests) and some of these have very low
bug find percentages.

• A theoretically less powerful test can be more likely to detect bugs in
the same area as the theoretically more powerful test, if you’ve
already run the more powerful test (but not the weaker one) and the
program consistently passes it

10
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

An analogy: Clearing
mines

mines This analogy was first presented by Brian Marick.
These slides are from James Bach..

11
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Totally repeatable tests
won’t clear the minefield

mines fixes

12
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Variable Tests are Often
More Effective

mines fixes

13
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Automated GUI regression
• Look back at the minefield

analogy
• Are you convinced that

variable tests will find
more bugs under all
circumstances?
– If so, why would people

do repeated tests?

Generate 10

counter-

examples to the

minefield

analogy.

14
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Repeat testing after changes

The essence of regression testing is repetition of
tests after changes. But if you scratch the surface, you
find several fundamentally different visions.
– Procedural: Run the same tests again in the same ways

• Delegation of labor: Welcome to the factory
• Reuse good tests: Two visions of power (of tests)
• Acts of faith: We do it because (… it’s

scientific…?)
– Economical: Repeat tests because (when, if) they’re cheap
– Support refactoring: Help the programmer discover

implications of her code changes.
– Risk-oriented: Expose errors caused by change

• Which
tests
repeat?

• How
similar to
the
previous
ones?

• Why?

15
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

The economic perspective

• Cost of reuse versus cost of generation of new tests
– What is the maintenance cost compared to creation cost?
– Will we have the resources available for new tests in the event of

• Patch releases?
• Localization releases?

• Benefit of reused test versus benefit of new tests
– High power, saved data entry time, elimination of user error,

performance benchmarking, etc.
• Opportunity cost of working on variants of old tests instead of new

tests that
– Focus on new areas of the program or
– Focus on vital areas of the program.

• We might reuse tests not because we think they’re great
– but because it might be better to use weak tests than none, when

the cost of creating better tests exceeds the benefit.

16
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Repeat testing after changes

The essence of regression testing is repetition of
tests after changes. But if you scratch the surface, you
find several fundamentally different visions.
– Procedural: Run the same tests again in the same ways

• Delegation of labor: Welcome to the factory
• Reuse good tests: Two visions of power (of tests)
• Acts of faith: We do it because (… it’s

scientific…?)
– Economical: Repeat tests because (when, if) they’re cheap
– Support refactoring: Help the programmer discover

implications of her code changes.
– Risk-oriented: Expose errors caused by change

• Which
tests
repeat?

• How
similar to
the
previous
ones?

• Why?

17
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Refactoring support:
Change detectors

• The programmer modifies working code in order to improve its
quality (such as maintainability, performance, etc.)

• The program should pass the same behavioral tests before and
after the change(s).

• Unit test libraries make refactoring much easier
– Common case: test-driven development using glass-box testing

tools like JUnit, httpUnit, and FIT to create the low-level
regression tests.

– The intent of the tests is to exercise every function in interesting
ways, so that when the programmer refactors code, she can
quickly see

• what would break if she made a change to a given
variable, data item or function or

• what she did break by making the change.

18
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Refactoring support:
Change detectors

There are enormous practical differences between system-level black-box regression
testing and unit-level (or integration-level) glass-box regression testing

– In the unit test situation, the programmer (not an independent tester) writes the tests, typically
before she writes the code. The tests focuses the programming, yielding better code in the first
place.

– In the unit test case, when the programmer’s change has a side-effect, (under XP) she
immediately discovers and fixes it. There is no communication cost. You don't have (as in
black box testing) a tester who discovers a bug, replicates it, reports it, and then a project
manager who reads the report, maybe a triage team who study the bug and agree it should be
fixed, a programmer who has to read the report, troubleshoot the problem, fix it, file the fix, a
tester who has to retest the bug to determine that the fix really fixed the problem and then close
the bug. All labor-hours considered, this can easily cost 4 hours of processing time, compared
to a few minutes to fix a bug discovered at the unit level.

– In the black box case, test case maintenance costs are high, partially because the same broken
area of code might be be involved in dozens of system level tests. And partially because it takes
a while for the black box tester to understand the implications of the code changes (which he
doesn't see). The programmer fixes tests that are directly tied to the changes she makes, and she
sees the tests break as soon as she makes the change, which helps her reappraise whether the
change she is making is reasonable.

– Fowler, Refactoring; Astels, Test-Driven Development; Link, Unit Testing in Java; Rainsberger JUNIT
Recipes

19
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Repeat testing after changes

The essence of regression testing is repetition of
tests after changes. But if you scratch the surface, you
find several fundamentally different visions.
– Procedural: Run the same tests again in the same ways

• Delegation of labor: Welcome to the factory
• Reuse good tests: Two visions of power (of tests)
• Acts of faith: We do it because (… it’s

scientific…?)
– Economical: Repeat tests because (when, if) they’re cheap
– Support refactoring: Help the programmer discover

implications of her code changes.
– Risk-oriented: Expose errors caused by change

• Which
tests
repeat?

• How
similar to
the
previous
ones?

• Why?

20
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Risk-oriented regression
In this approach, we might re-use old tests or create new ones. Often, we retest an
area or function with tests of increasing power (perhaps by combining them with
other functions). The focus of the technique is on testing for side effects of change,
not the inventory of old tests.
Here are examples of a few common ways to test a program more harshly while
retesting in the same area.

– Do more iterations (one test hits the same function many times).
– Do more combinations (interactions among variables, including the function under

test's variables).
– Do more things (sequences of functions that include the function under test).
– Methodically cover the code (all N-length sequences that include the function

under test; all N-wide combinations that include the function under test's variables
and variables that are expected to interact with or constrain or be constrained by the
function under test).

– Look for specific errors (such as similar products’ problems) that involve the
function under test.

– Try other types of tests, such as scenarios, that involve the function under test.
– Try to break it (take a perverse view, get creative).

» Thanks to Doug Hoffman for a draft of this list

21
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Summing up
• Regression testing as a technique:

– It primarily specifies an activity
• Retest after changes

– It only weakly specifies a risk
• Changes break things
• Regulators might reject things that don’t look tightly

controlled
– It specifies a weak oracle

• Whatever happened last time
– That won’t always be correct
– And it doesn’t help when you first design and run the test

– It doesn’t address coverage or the characteristics of the tester.

• The details of test design come from some other
underlying technique.

22
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Summing up

• Regression tests have mixed costs and benefits
– Many regulators and process inspectors like and expect this approach
– The tests exist already (no need for new design, or new implementation, but the

maintenance cost can be enormous)
– Because we are investing in re-use, sometimes we can afford to craft each test

carefully, making it more likely to be valuable later.
– This is the dominant paradigm for automated testing, so it’s relatively easy to justify

and there are lots of commercial tools.
– These tests are often overrated. They lose their power to find bugs over time (the bug

find curve for regression has been compared to an immunization curve—Boris Beizer
nicknamed it the Pesticide Paradox)

– Repeating the same tests means not looking for the bugs that can be found by other
tests.

• You might get the same benefits, with more creativity, in a less structured
approach to regression. But that might cost more.

• Much regression testing can / should be done, more efficiently and effectively, as
unit tests rather than black box system tests.

23
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Readings
REGRESSION TESTING IN GENERAL
• Marick, How Many Bugs Do Regression Tests Find?
• Beck, Test-Driven Development By Example
GUI-LEVEL AUTOMATED REGRESSION TESTING
• Chris Agruss, Automating Software Installation Testing
• James Bach, Test Automation Snake Oil
• Hans Buwalda, Testing Using Action Words
• Hans Buwalda, Automated testing with Action Words: Abandoning Record & Playback
• Elisabeth Hendrickson, The Difference between Test Automation Failure and Success
• Doug Hoffman, Test Automation course notes
• Cem Kaner, "Improving the maintainability of automated test suites." Software QA, Volume 4, #4, 1997.

(Also published in Proceedings of the 10th International Software Quality Conference (Quality Week), San
Francisco, CA, May 28, 1997.)

• Cem Kaner, "Avoiding shelfware: A manager's view of automated GUI testing." (Keynote address)
Software Testing Analysis & Review Conference (STAR) East, Orlando, FL, May 6, 1998.

• Cem Kaner, "Architectures of test automation." Software Testing, Analysis & Review Conference (Star)
West, San Jose, CA, October, 2000.

• John Kent, Advanced Automated Testing Architectures
• Bret Pettichord, Success with Test Automation
• Bret Pettichord, Seven Steps to Test Automation Success
• Keith Zambelich, Totally Data-Driven Automated Testing

