
1
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Black Box Software TestingBlack Box Software Testing
Spring 2005Spring 2005
REQUIREMENTS ANALYSIS

FOR TEST DOCUMENTATION

Cem Kaner, J.D., Ph.D.
Professor of Software Engineering
Florida Institute of Technology
and
James Bach
Principal, Satisfice Inc.

Copyright (c) Cem Kaner & James Bach, 2000-2004
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

These notes are partially based on research that was supported by NSF Grant EIA-0113539
ITR/SY+PE: "Improving the Education of Software Testers." Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

2
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

AcknowledgementAcknowledgement
• Some of the material in the sections on test documentation is from the Third

Los Altos Workshop on Software Testing (LAWST), February 7 and 8, 1998.
Kaner founded LAWST and was co-organizer of LAWST 3.

• At LAWST, we discussed test documentation (test planning strategies and
materials). The agenda item was:
– How do we know what test cases we have? How do we know which areas

of the program are well covered and which are not?
– How do we develop this documentation EFFICIENTLY? As many of you

know, I despise thick test plans and I begrudge every millisecond that I
spend on test case documentation. Unfortunately, some work is
necessary. My question is, how little can we get away with, while still
preserving the value of our asset?

• The following people attended LAWST 3: Chris Agruss, James Bach, Karla
Fisher, David Gelperin, Kenneth Groder, Elisabeth Hendrickson, Doug
Hoffman, III, Bob Johnson, Cem Kaner, Brian Lawrence, Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord, Johanna Rothman,
Jane Stepak, Melora Svoboda, Jeremy White, and Rodney Wilson.

• Bret Pettichord contributed to this material as we reviewed / modified it for
Lessons Learned in Software Testing.

3
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

DefinitionsDefinitions
• The set of test planning documents might include:

– Lists or descriptions of test cases
– High-level designs of test cases and suites (collections of related tests)
– Descriptions of the platforms (hardware and software environments) that

you will test on, and of relevant variations among the items that make up
your platform. Examples of variables are operating system type and
version, browser, printer, printer driver, video card/driver, CPU, hard disk
capacity, free memory, and third party utility software

– Descriptions (such as protocol specifications) of the interactions of the
software under test (SUT) with other applications that the SUT must
interact with. Example: SUT includes a web-based shopping cart, which
must obtain credit card authorizations from VISA

– A Testing Project Plan, which identifies classes of tasks and broadly
allocates people and resources to them

– Anything else that you would put in a hard copy or virtual binder that
describes the tests you will develop and run

• This set of materials is called the test plan or the test documentation set.

4
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Basic Documentation Basic Documentation
ComponentsComponents

• Lists:
– Such as lists of fields, error messages, DLLs

• Outlines: organize information into a hierarchy of lists and sublists
– Such as a function list or an "objectives outline"

• Tables: organize information in two dimensions showing relationships
between variables
– Such as boundary tables, decision tables, combination test tables

• Matrices: special type of table used for data collection. Rows specify
what to test, columns specify the test, and you fill cells in at test time to
record results
– Such as the numeric input field matrix, configuration matrices

• Models: visual, verbal, logical or tangible descriptions of the product
that the tester might trace through for test ideas
– Such as UML diagrams, architecture diagrams, state charts

» Refer to Testing Computer Software, pages 217-241.

5
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Outline example: Outline example:
Objectives outlineObjectives outline

• Test objectives:
–Inputs

• Field-level
– (list each variable)

• Group-level
– (list each interesting combination of variables)

–Outputs
• Field-level

– (list each variable)
• Group-level

– (list each interesting combination of variables)

» Based on materials in his SQE's Systematic Software Testing
course, with thanks to David Gelperin

6
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Objectives outlineObjectives outline

• Requirements-based objectives
– Capability-based (from functional design)

• Functions or methods including major calculations (and their
trigger conditions)

• Constraints or limits (non-functional requirements)
• Interfaces to other products
• Input (validation) and Output conditions at up to 4 levels of

aggregation, such as
– field / icon / action / response message
– record / message / row / window / print line
– file / table / screen / report
– Database

• Product states and transition paths
• Behavior rules

– truth value combinations

7
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Objectives outlineObjectives outline
• Design-based objectives

(resulting from architectural design)
– Processor and invocation paths
– Messages and communication paths
– Internal data conditions
– Design states
– Limits and exceptions

• Code-based objectives
– Control-based

• Branch-free blocks (i.e. statements)
• (Top) branches
• Loop bodies: 0,1, and even
• Single conditions: LT, EQ, and GT

– Data-based
• Set-use pairs
• Revealing values for calculations

8
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Table Example: Table Example:
Configuration PlanningConfiguration Planning

V5-6V4-6V3-6V2-6V1-6Config 6
V5-5V4-5V3-5V2-5V1-5Config 5
V5-4V4-4V3-4V2-4V1-4Config 4
V5-3V4-3V3-3V2-3V1-3Config 3
V5-2V4-2V3-2V2-2V1-2Config 2
V5-1V4-1V3-1V2-1V1-1Config 1
Var 5Var 4Var 3Var 2Var 1

This table defines 6 standard configurations for testing. In later tests, the lab
will set up a Config-1 system, a Config-2 system, etc., and will do its
compatibility testing on these systems. The variables might be software or
hardware choices. For example, Var 1 could be how much RAM on the
computer under test (V1-1 is 512 meg, V1-2 is 128 meg., etc.). Var 2 could
be the operating system and version, etc.

9
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Matrix Example: Matrix Example:
Configuration MatrixConfiguration Matrix

Config 6

PassPassFailPassFailTest 5
PassFailFailPassTest 4
PassPassPassPassPassTest 3
PassPassPassFailTest 2
PassPassPassPassPassTest 1
Config 5Config 4Config 3Config 2Config 1

This matrix records the results of a series of tests against the 6 standard
configurations that we defined in the Configuration Planning Table.

In this table, Config 1 has passed 3 tests, failed 1, and hasn’t yet been tested
with Test 2. Config 6 is still untested.

10
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

IEEE Standard 829 for software test documentationIEEE Standard 829 for software test documentation
• Test plan
• Test-design specification
• Test-case specification

– Test-case specification identifier
– Test items
– Input specifications
– Output specifications
– Environmental needs
– Special procedural requirements
– Intercase dependencies

• Test-procedure specification
• Test-item transmittal report
• Test-log

We often see
one or more
pages per
test case.

For a balanced discussion of pro’s and cons of IEEE 829, with much
more detail than I can provide in this lecture, see Lessons Learned in
Software Testing.

11
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

CostsCosts
How long does it take to document one test case?

–Productivity of one hour to one day per page of test documentation?
–If a thoroughly documented test case requires one page (or several),

how many tester days (tester years) would it take to document 5000
tests?

Test documentation
is an expensive product.

12
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Costs of heavyweight Costs of heavyweight
approachesapproaches
• High Initial Cost: What is your documentation cost per test case?
• High Maintenance Cost: How many test cases will you have to modify in how

many places when a change occurs?
• Project Inertia: The more that software design changes cause documentation

maintenance costs, the more we’ll resist change.
• Drives Test Design: Detailed, static documentation favors invariant regression

testing. It’s challenging to cost effectively introduce variation in test parameters
to improve coverage, or to randomly combine features of old tests to improve
efficiency of regression tests

• Discourages Exploration: How do we document exploratory testing? If we
have to document all tests, we strongly discourage exploration.

• Discourages High Volume Automation: How many tests can you afford to
document?

• Failing Track Record: Many teams start to follow 829 but drop it mid-project.
By this point, they’ve filled out all the boilerplate but left the key testing details
as TBD (To Be Determined). How does this affect net quality of test
documentation and test planning? To legal exposure in the event of a quality-
related lawsuit?

13
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Requirements Requirements
engineeringengineering

• Anything that drives or constrains design
• A generally accepted assertion in software engineering is that

– If you don’t know what you’re trying to build
• Whatever you build

– Probably won’t be what your customer wanted
• Prescriptive standards and templates that encourage people to do the

same thing in all contexts (rather than carefully tailoring the work to the
context) will yield inappropriate products (waste time and money creating the
wrong types of documentation).

• One of the challenges in talking about 829 is that on the surface it
appears descriptive, not prescriptive:
– But it groups concepts together in mandatory ways (such as, “A test plan

shall have the following structure” with a long list of stuff), and
– Groups that try to follow it often (usually?) try to include all the categories

of information it calls for.

14
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Requirements for test docs?Requirements for test docs?
Before adopting a solution
– Some specification that says what we will write

Maybe we should ask:
– Who wants this?
– What will they use it for?
– What do they need?
– How much will it cost?
– Are they (we) willing to spend that much?
– Will the benefits outweigh the costs?
– What other effects will creating this material have on us?

And base our decision about what to write on the requirements we
actually determine that we have.
IMPORTANT: You don’t have to do all this up front. You can gain
information over time and build docs gradually. The goal is
responsiveness to stakeholder needs—many will appear or become
clear only as the project evolves.

15
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Discovering requirements?Discovering requirements?

• Ask questions about stakeholders
–[Stakeholders]

• Who are the stakeholders?
• Who would use or be affected by the test documentation?

–[Interests]
• What are their interests?
• (Not what they find interesting--how does this serve their broad

objectives?)
–[Actions]

• What will they do with the documentation?
–[Objects]

• What things do they want? What types of document are of high or
low value?

• Ask additional questions:
–Context-free questions
–Context-free questions specific to test planning

16
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

StakeholdersStakeholders

• Anyone who would benefit from your system.
• Favored:

– You want to meet their requirements.
– Such as your customers or your tech support staff.

• Disfavored
– You design the product to make it harder for them to meet their requirements.
– Such as embezzlers (they want security holes in your system and would appreciate

getting test documentation that thoroughly describes your system’s security
weaknesses). Disfavored stakeholders would often succeed through your failure or
weakness. Competitors might be disfavored or neutral stakeholders

• Neutral
– You don’t consider their interests in planning or implementing your system.
– They have no influence on your system.

• Vested or investment-backed
– They invested in your system and probably have some legal rights in it.

• With influence
– Your development organization will listen carefully to their opinions

17
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Stakeholder interestsStakeholder interests

• In the last slide, we asked who we were paying attention to. In this
slide, we recognize that even people who are attempting to serve “the
best interests of the project” will perceive those differently depending
on their situation, including their other interests.

• People and companies have their own objectives, such as getting a
raise, a promotion, a new job, saving their marriage, paying debts, etc.

• Your project or product might serve or disserve their interests.
– For example, a marketing executive might push to broaden the scope of

your product because he believes that a product that is perceived as more
important or more ambitious will look better on his resume (even if a more
objective analysis would predict lower profitability as a consequence).

Your product might have to adjust to support some people’s interests,
even if the adjustments would be otherwise seen as boneheaded.

18
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

ActionsActions

How will people use the documentation?
–Actions might support or interfere with an individual’s (or

company’s) interests.
• A tech support manager improves speed and quality of support for

calls about compatibility with peripherals by using test data from
the bug tracking system. She asks for more extensive
compatibility testing and more thorough writeups of results.

• A tech writer asks that function lists be kept up to date because
these are useful outlines for the reference manual.

• A project manager doesn’t want detailed project task breakdowns
and time estimates in the test plan because these will show the
project is far behind schedule before the manager has time to fix
the problem or shift the blame.

–There will be more actions, for more types of documentation, than
you can afford to support

19
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

ObjectsObjects
• What artifacts will you create, and how will these enable the

actions that your stakeholders will wish to take?
–There are many different possible test-related documents.
–The challenge is to pick the set that

• You have time to create (and keep as up to date as necessary)
• Someone will use
• Serve the overall mission of the testing effort

20
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Test Docs Requirements Test Docs Requirements
QuestionsQuestions
• Is test documentation a product or tool?
• Is software quality driven by legal issues or by market forces?

• How quickly is the design changing?

• How quickly does the specification change to reflect design
change?

• Is testing approach oriented toward proving conformance to
specs or nonconformance with customer expectations?

• Does your testing style rely more on already-defined tests or on
exploration?

• Should test docs focus on what to test (objectives) or on how to
test for it (procedures)?

• Should the docs ever control the testing project?

21
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Test Docs Requirements Test Docs Requirements
QuestionsQuestions
• If the docs control parts of the testing project, should that control

come early or late in the project?
• Who are the primary readers of these test documents and how

important are they?

• How much traceability do you need? What docs are you tracing
back to and who controls them?

• To what extent should test docs support tracking and reporting of
project status and testing progress?

• How well should docs support delegation of work to new testers?

• What are your assumptions about the skills and knowledge of
new testers?

• Is test doc set a process model, a product model, or a defect
finder?

22
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Test Docs Requirements Test Docs Requirements
QuestionsQuestions
• A test suite should provide prevention, detection, and

prediction. Which is the most important for this project?

• How maintainable are the test docs (and their test cases)?
And, how well do they ensure that test changes will follow
code changes?

• Will the test docs help us identify (and revise/restructure in
face of) a permanent shift in the risk profile of the program?

• Are (should) docs (be) automatically created as a byproduct
of the test automation code?

23
Black Box Software Testing Copyright © 2003-5 Cem Kaner & James Bach

Ultimately, write a mission Ultimately, write a mission
statementstatement
• Try to describe your core documentation requirements in one

sentence that doesn’t have more than three components.

The test documentation set will primarily support
our efforts to find bugs in this version, to delegate

work, and to track status.

The test documentation set will support ongoing product and
test maintenance over at least 10 years, will provide training
material for new group members, and will create archives

suitable for regulatory or litigation use.

Two
contrasting
missions

