Teaching the Software Testing Course: A Tutorial

Cem Kaner, J.D., Ph.D.
Florida Institute of Technology
kaner(@kaner.com

Abstract
This tutorial provides materials and supporting discussion for teaching the software
testing course. Readers who see this description after CSEE&T 2004 is complete, can find
the latest set of course materials at www.testingeducation.org.

1. Introduction

This tutorial is intended to help you think through the attributes of the software testing
course(s) that you might teach or support at your university.

I teach two primary courses in testing (both required for Florida Tech's B.Sc. in Software
engineering). The first studies black box testing, the second a mix of glass box testing and
test-driven programming. We offer several other test-related courses focusing on security-
related testing, mathematics underlying certain testing models, and special topics of interest
in the current year. This gives me access to a variety of support material. Lecture notes
donated by other teachers (at www.testingeducation.org) supplement that further.

My foundation vision is that testers are technical investigators, who use a wide array of
techniques to discover quality-related information about a product under test. I stress
critical thinking, risk analysis, exploratory bug-hunting, and persuasive communication
over routine procedure.

The tutorial considers the course from five angles:

= Course scope and design

= Assignments

= Exams

= Available materials

2. Course scope and design

If I was teaching only one testing course, it would be black box, evaluating the program
from the outside. I'd rather focus students on what's actually done in industry—and how to
do it very well—than on programming or on interesting, but primarily theoretical, issues.

Other instructors prefer glass box techniques or hope to achieve a blend.

My goal in this section is a discussion. I'll explain my preference and my concerns about
alternate approaches. I hope other attendees will share their experiences and scope
reasoning.

3. Assignments
I prefer authentic performances, in Wiggins’ [10] sense—realistic, meaningful tasks. We

pick an open source product under development and apply an ongoing series of test
techniques to it. We report bugs in their bug tracking database and get feedback from their



programmers. In the glass box class, we take on a much smaller program, probably an open
source test tool, reverse engineer it, enhance it, evaluate and enhance its unit tests and
perhaps its API-level tests.

We'll share experiences with these and other types of assignments, and consider the
logistics (facilities, hardware, etc.) needed to support this work.

4. Exams

I hand out a study guide near the start of the term. The guide has many questions,
including definitions, short answer essays or derivations, and longer answer essays, graphs,
or derivations. The exam questions are drawn from the study guide pool. This encourages
students to study everything I want them to study in the course, to prepare carefully
thought out answers, and to collaborate with other students. I can and do demand and get
high quality answers on exams, but it takes a lot of coaching to help students learn how to
provide those answers.

5. Available materials

Attendees will receive a CD with 750 slides of lecture notes, a few dozen supporting
papers, and pointers to other papers useful to assign as required or supplementary reading.
There's more material here than you can cover in a term, but what's here may cover many
or most of the topics you want in your course.

6. Acknowledgements

The black box testing course has matured over a 10-year period, with the help of many
commercial and academic colleagues. I've taught variations of the course over 100 times as
professional development short courses (8 to 40 lecture hours), frequently co-teaching with
Hung Quoc Nguyen [7, 8, 9], Doug Hoffman [3], James Bach [1, 5, 6] and Elisabeth
Hendrickson [2]. IBM/Rational's course, Principles of Software Testing for Testers [4], is a
customized version of this course. I've also taught an academic version of the course seven
times, supervised the teaching of it by Pat McGee, and am now helping other instructors
adapt the course to their schools. Recent course development has been partially supported
by NSF Grant EIA-0113539 ITR/SY+PE: "Improving the Education of Software Testers."

7. References

[1] Bach, J. website, http://www.satisfice.com

[2] Hendrickson, E. http://www.qualitytree.com/

[3] Hoffman, D. http://softwarequalitymethods.com/

[4] Kaner, C. Principles of Software Testing for Testers, course available from IBM/Rational,
http://www.rational.com/university/paths/tester.jsp

[5] Kaner, C. & Bach, J. Black Box Testing: Commercial Course Notes, 2003,
http://www.testingeducation.org/coursenotes

[6] Kaner, C., Bach, J. & Pettichord, B. Lessons Learned in Software Testing, John Wiley & Sons, 2001

[7] Kaner, C., Falk, J., Nguyen, H.Q. Testing Computer Software, 2d ed., Van Nostrand Reinhold 1993,
reprinted John Wiley & Sons, 1999

[8] Nguyen, H.Q., www.logigear.com

[9] Nguyen, H.Q., Johnson, B. & Hackett, M. Testing Applications on the Web: Test Planning for Mobile and
Internet-Based Systems, Second Edition, 2003

[10] Wiggins, G. Educative Assessment, Jossey-Bass, 1998



