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THE REASON FOR THIS APPENDIX 

This Appendix describes over 400 bugs. The descriptions are short, including only what we 
considered the most interesting information. It's worthwhile reading this list, even though 
you may find it boring. On first reading it provides a frame of referenceódetails, and 
background about problems you should look for while testing. Its greater value is as an 
organized list of program problems for future reference. A good list, built up with time and 
experience, can be a powerful tool. 

A set of test materials is nothing more than a list of possible problems in a program and a 
set of procedures for determining whether the problems are actually there or not.

Generating reference lists of bugs on the fly is risky and inefficient. It takes too long to 
dredge up old insights, and you're too likely to get stuck on one or a few themes. We prefer 
to check a comprehensive "standard" list to get further ideas for testing a program. This 
Appendix is an example of a standard list. 

Whenever you test a new program, you'll think of new entries for this list. Add them to it. 
We recommend that you enter this list onto your computer and manage it with an outline 
processor. 

Here are examples of ways you should use this list: 

1. Evaluate test materials developed for you by someone else. When you contract out the 
development of test materials you're likely to get back many thick binders of test cases. They 
look impressive, but they're incomplete. The author has blind spots, which you have to find. 
For example, in stacks of test materials that we've seen developed by contract testing 
agencies, we've yet to see an explicit race condition test. Unfortunately, it's easier to see what 
an author had in mind than to step back and see what's missing. 
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We recommend evaluating the coverage of test materials against a checklist. Include a few 
examples of each class of error that you can imagine existing in the program. It doesn't 
matter whether the program has these problems ó it only matters that they could be there. 
Once the list is complete, check the test materials to see which problems they would expose. 
If these tests wouldn't expose some errors in your list, look for tests for similar problems. 
This can quickly expose large classes of missing tests. 

It's easy to make a checklist from a large error list like the one in this Appendix. Just look for 
classes of errors that are relevant to your testing project and find a few good examples of 
each. Add any other problems that you think of that seem important for the program under 
test. 

2. Developing your own tests. 

Write your own list of errors that you think the program could have. Then look here for more 
ideas. Consider each problem in this Appendix: if you're sure it's irrelevant to the program, 
forget it. Otherwise write a test case (or a few) to see if the program has the problem. When 
in doubt, ask the programmer whether a given type of error is possible in the program and 
how to test for it. 

We also recommend this list for testing "on the fly." If you don't have time to plan and 
document a set of tests for a program, test from a list of candidate problems. 

3. Irreproducible bugs. 

A bug is hard to replicate because you don't know what triggered the failure, what the 
program did or displayed, or what could cause such a problem. You give up because you run 
out of hypotheses. 

Use this Appendix before giving up.

Try to match reported symptoms with problems listed in this Appendix. Be creative: the 
matches won't be perfect because the reports are incomplete and incorrect. (If they weren't, 
you could reproduce the bug.) Even so, the list can help you break out of your current line of 
thinking. If you didn't need to refocus on other possibilities, you wouldn't be so close to 
giving up. 

4. Unexpected Bugs. 
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When you discover a bug accidentally, or when one surfaces in a shipping product, look for 
others like it. You probably missed running a group of tests to detect the lot. This section can 
help you generate a list of possible related problems and tests.   

  

OUTLINE OF COMMON SOFTWARE ERRORS

USER INTERFACE ERRORS 

FUNCTIONALITY 

Excessive functionality 
Inflated impression of functionality 
Inadequacy for the task at hand 
Missing function 
Wrong function 
Functionality must be created by the user 
Doesn't do what the user expects 

COMMUNICATION 

Missing information 

No onscreen instructions 
Assuming printed documentation is readily available 
Undocumented features 
States that appear impossible to exit 
No cursor 
Failure to acknowledge input 
Failure to show activity during long delays 
Failure to advise when a change will take effect 
Failure to check for the same document being opened more than once 

Wrong, misleading, or confusing information 

Simple factual errors 
Spelling errors 
Inaccurate simplifications 
Invalid metaphors 
Confusing feature names 
More than one name for the same feature 
Information overload 
When are data saved? 
Poor external modularity 
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Help text and error messages 

Inappropriate reading level 
Verbosity 
Inappropriate emotional tone 
Factual errors 
Context errors 
Failure to identify the source of an error 
Hex dumps are not error messages 
Forbidding a resource without saying why 
Reporting non-errors 

Display bugs 

Two cursors 
Disappearing cursor 
Cursor displayed in the wrong place 
Cursor moves out of data entry area 
Writing to the wrong screen segment 
Failure to clear part of the screen 
Failure to highlight part of the screen 
Failure to clear highlighting 
Wrong or partial string displayed 
Messages displayed for too long or not long enough 

Display layout 

Poor aesthetics in the screen layout 
Menu layout errors 
Dialog box layout errors 
Obscured instructions 
Misuse of flash 
Misuse of color 
Heavy reliance on color 
Inconsistent with the style of the environment 
Cannot get rid of onscreen information 

COMMAND STRUCTURE AND ENTRY 

Inconsistencies 

"Optimizations" 
Inconsistent syntax 
Inconsistent command entry style 
Inconsistent abbreviations 
Inconsistent termination rule 
Inconsistent command options 
Similarly named commands 
Inconsistent capitalization 
Inconsistent menu position 
Inconsistent function key usage 
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Inconsistent error handling rules 
Inconsistent editing rules 
Inconsistent data saving rules 

Time-wasters 

Garden paths 
Choices that can't be taken 
Are you really, really sure? 
Obscurely or idiosyncratically named commands 

Menus 

Excessively complex menu hierarchy 
Inadequate menu navigation options 
Too many paths to the same place 
You can't get there from here 
Related commands relegated to unrelated menus 
Unrelated commands tossed under the same menu 

Command lines 

Forced distinction between uppercase and lowercase 
Reversed parameters 
Full command names not allowed 
Abbreviations not allowed 
Demands complex input on one line 
No batch input 
Can't edit commands 

Inappropriate use of the keyboard 

Failure to use cursor, edit, or function keys 
Non-standard use of cursor and edit keys 
Non-standard use of function keys 
Failure to filter invalid keys 
Failure to indicate keyboard state changes 
Failure to scan for function or control keys 

MISSING COMMANDS 

State transitions 

Can't do nothing and leave 
Can't quit mid-program 
Can't stop mid-command 
Can't pause 

Disaster prevention 

No backup facility 
No undo 
No Are you sure? 
No incremental saves 
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Error handling by the user 

No user-specifiable filters 
Awkward error correction 
Can't include comments 
Can't display relationships between variables 

Miscellaneous nuisances 
Inadequate privacy or security 
Obsession with security 
Can't hide menus 
Doesn't support standard O/S features 
Doesn't allow long names 

PROGRAM RIGIDITY 

User tailorability 

Can't turn off the noise 
Can't turn off case sensitivity 
Can't tailor to hardware at hand 
Can't change device initialization 
Can't turn off automatic saves 
Can't slow down (speed up) scrolling 
Can't do what you did last time 
Can't find out what you did last time 
Failure to execute a customization command 
Failure to save customization commands 
Side-effects of feature changes 
Infinite tailorability 

Who's in control 

Unnecessary imposition of a conceptual style 
Novice-friendly, experienced-hostile 
Artificial intelligence and automated stupidity 
Superfluous or redundant information required 
Unnecessary repetition of steps 
Unnecessary limits 

PERFORMANCE 

Slow program 
Slow echoing 
How to reduce user throughput 
Poor responsiveness 
No type-ahead 
No warning that an operation will take a long time 
No progress reports 
Problems with time-outs 
Program pesters you 
Do you really want help and graphics at 300 baud? 
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OUTPUT 

Can't output certain data 
Can't redirect output 
Format incompatible with a follow-up process 
Must output too little or too much 
Can't control output layout 
Absurd printed level of precision 
Can't control labeling of tables or figures 
Can't control scaling of graphs

ERROR HANDLING 

ERROR PREVENTION 

Inadequate initial state validation 
Inadequate tests of user input 
Inadequate protection against corrupted data 
Inadequate tests of passed parameters 
Inadequate protection against operating system bugs 
Inadequate version control 
Inadequate protection against malicious use 

ERROR DETECTION 

Ignores overflow 
Ignores impossible values 
Ignores implausible values 
Ignores error flag 
Ignores hardware fault or error conditions 
Data comparisons 

ERROR RECOVERY 

Automatic error correction 
Failure to report an error 
Failure to set an error flag 
Where does the program go back to? 
Aborting errors 
Recovery from hardware problems 
No escape from missing disk

BOUNDARY-RELATED ERRORS 

NUMERIC BOUNDARIES 
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EQUALITY AS A BOUNDARY 
BOUNDARIES ON NUMEROSITY 
BOUNDARIES IN SPACE 
BOUNDARIES IN TIME 
BOUNDARIES IN LOOPS 
BOUNDARIES IN MEMORY 
BOUNDARIES WITHIN DATA STRUCTURES 
HARDWARE-RELATED BOUNDARIES 
INVISIBLE BOUNDARIES 
CALCULATION ERRORS 
OUTDATED CONSTANTS

CALCULATION ERRORS 

IMPOSSIBLE PARENTHESES 
WRONG ORDER OF OPERATORS 
BAD UNDERLYING FUNCTION 
OVERFLOW AND UNDERFLOW 
TRUNCATION AND ROUNDOFF ERROR 
CONFUSION ABOUT THE REPRESENTATION OF THE DATA 
INCORRECT CONVERSION FROM ONE DATA REPRESENTATION TO 
ANOTHER 
WRONG FORMULA 
INCORRECT APPROXIMATION 

INITIAL AND LATER STATES 

FAILURE TO SET A DATA ITEM TO 0 
FAILURE TO INITIALIZE A LOOP-CONTROL VARIABLE 
FAILURE TO INITIALIZE (OR REINITIALIZE) A POINTER 
FAILURE TO CLEAR A STRING 
FAILURE TO INITIALIZE (OR REINITIALIZE) REGISTERS 
FAILURE TO CLEAR A FLAG 
DATA WERE SUPPOSED TO BE INITIALIZED ELSEWHERE 
FAILURE TO REINITIALIZE 
ASSUMPTION THAT DATA WERE NOT REINITIALIZED 
CONFUSION BETWEEN STATIC AND DYNAMIC STORAGE 
DATA MODIFICATION BY SIDE-EFFECT 
INCORRECT INITIALIZATION 
RELIANCE ON TOOLS THE CUSTOMER MAY NOT HAVE OR UNDERSTAND 
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CONTROL FLOW ERRORS 

PROGRAM RUNS AMOK 

GOTO somewhere 
Come-from logic errors 
Problems in table-driven programs 
Executing data 
Jumping to a routine that isn't resident 
Re-entrance 
Variables contain embedded command names 
Wrong returning state assumed 
Exception-handling based exits 
Return to wrong place 

Corrupted stack 
Stack under/overflow 
GOTO rather than RETURN from a subroutine 

Interrupts 

Wrong interrupt vector 
Failure to restore or update interrupt vector 
Failure to block or unblock interrupts 
Invalid restart after an interrupt 

PROGRAM STOPS 

Dead crash 
Syntax errors reported at run-time 
Waits for impossible condition, or combination of conditions 
Wrong user or process priority 

LOOPS 

Infinite loop 
Wrong starting value for the loop control variable 
Accidental change of the loop control variable 
Wrong criterion for ending the loop 
Commands that do or don't belong inside the loop 
Improper loop nesting 

IF, THEN, ELSE, OR MAYBE NOT 

Wrong inequalities (e.g., > instead of >=) 
Comparison sometimes yields wrong result 
Not equal versus equal when there are three cases 
Testing floating point values for equality 
Confusing inclusive and exclusive OR 
Incorrectly negating a logical expression 
Assignment-equal instead of test-equal 
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Commands belong inside the THEN or ELSE clause 
Commands that don't belong inside either clause 
Failure to test a flag 
Failure to clear a flag 

MULTIPLE CASES 

Missing default 
Wrong default 
Missing cases 
Case should be subdivided 
Overlapping cases 
Invalid or impossible cases 

ERRORS IN HANDLING OR INTERPRETING DATA 

PROBLEMS WHEN PASSING DATA BETWEEN ROUTINES 

Parameter list variables out of order or missing 
Data type errors 
Aliases and shifting interpretations of the same area of memory 
Misunderstood data values 
Inadequate error information 
Failure to clean up data on exception-handling exit 
Outdated copies of data 
Related variables get out of synch 
Local setting of global data 
Global use of local variables 
Wrong mask in bit field 
Wrong value from a table

DATA BOUNDARIES 

Unterminated null terminated strings 
Early end of string 
Read/write past end of a data structure, or an element in it

READ OUTSIDE THE LIMITS OF A MESSAGE BUFFER 

Compiler padding to word boundaries 
Value stack under/overflow 
Trampling another process' code or data

MESSAGING PROBLEMS 

Messages sent to wrong process or port 
Failure to validate an incoming message 
Lost or out of synch messages 
Message sent to only N of N+1 processes
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DATA STORAGE CORRUPTION 

Overwritten changes 
Data entry not saved 
Too much data for receiving process to handle 
Overwriting a file after an error exit or user abort 

RACE CONDITIONS 

RACES IN UPDATING DATA 
ASSUMPTION THAT ONE EVENT OR TASK HAS FINISHED BEFORE ANOTHER 
BEGINS 
ASSUMPTION THAT INPUT WON'T OCCUR DURING A BRIEF PROCESSING 
INTERVAL 
ASSUMPTION THAT INTERRUPTS WON'T OCCUR DURING A BRIEF INTERVAL 
RESOURCE RACES: THE RESOURCE HAS JUST BECOME UNAVAILABLE 
ASSUMPTION THAT A PERSON, DEVICE, OR PROCESS WILL RESPOND 
QUICKLY 
OPTIONS OUT OF SYNCH DURING A DISPLAY CHANGE 
TASK STARTS BEFORE ITS PREREQUISITES ARE MET 
MESSAGES CROSS OR DON'T ARRIVE IN THE ORDER SENT 

LOAD CONDITIONS 

REQUIRED RESOURCE NOT AVAILABLE 
DOESN'T RETURN A RESOURCE 

Doesn't indicate that it's done with a device 
Doesn't erase old files from mass storage 
Doesn't return unused memory 
Wastes computer time 

NO AVAILABLE LARGE MEMORY AREAS 
INPUT BUFFER OR QUEUE NOT DEEP ENOUGH 
DOESN'T CLEAR ITEMS FROM QUEUE, BUFFER, OR STACK 
LOST MESSAGES 
PERFORMANCE COSTS 
RACE CONDITION WINDOWS EXPAND 
DOESN'T ABBREVIATE UNDER LOAD 
DOESN'T RECOGNIZE THAT ANOTHER PROCESS ABBREVIATES OUTPUT 
UNDER LOAD 
LOW PRIORITY TASKS NOT PUT OFF 
LOW PRIORITY TASKS NEVER DONE 
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HARDWARE 

WRONG DEVICE 
WRONG DEVICE ADDRESS 
DEVICE UNAVAILABLE 
DEVICE RETURNED TO WRONG TYPE OF POOL 
DEVICE USE FORBIDDEN TO CALLER 
SPECIFIES WRONG PRIVILEGE LEVEL FOR A DEVICE 
NOISY CHANNEL 
CHANNEL GOES DOWN 
TIME-OUT PROBLEMS 
WRONG STORAGE DEVICE 
DOESN'T CHECK DIRECTORY OF CURRENT DISK 
DOESN'T CLOSE A FILE 
UNEXPECTED END OF FILE 
DISK SECTOR BUGS AND OTHER LENGTH-DEPENDENT ERRORS 
WRONG OPERATION OR INSTRUCTION CODES 
MISUNDERSTOOD STATUS OR RETURN CODE 
DEVICE PROTOCOL ERROR 
UNDERUTILIZES DEVICE INTELLIGENCE 
PAGING MECHANISM IGNORED OR MISUNDERSTOOD 
IGNORES CHANNEL THROUGHPUT LIMITS 
ASSUMES DEVICE IS OR ISN'T, OR SHOULD BE OR SHOULDN'T BE 
INITIALIZED 
ASSUMES PROGRAMMABLE FUNCTION KEYS ARE PROGRAMMED 
CORRECTLY 

SOURCE, VERSION, AND ID CONTROL 

OLD BUGS MYSTERIOUSLY REAPPEAR 
FAILURE TO UPDATE MULTIPLE COPIES OF DATA OR PROGRAM FILES 
NO TITLE 
NO VERSION ID 
WRONG VERSION NUMBER ON THE TITLE SCREEN 
NO COPYRIGHT MESSAGE OR A BAD ONE 
ARCHIVED SOURCE DOESN'T COMPILE INTO A MATCH FOR SHIPPING CODE 
MANUFACTURED DISKS DON'T WORK OR CONTAIN WRONG CODE OR DATA 

TESTING ERRORS 
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MISSING BUGS IN THE PROGRAM 

Failure to notice a problem 
Misreading the screen 
Failure to report a problem 
Failure to execute a planned test 
Failure to use the most "promising" test cases 
Ignoring programmers' suggestions 

FINDING "BUGS" THAT AREN'T IN THE PROGRAM 

Errors in testing programs 
Corrupted data file 
Misinterpreted specifications or documentation

POOR REPORTING 

Illegible reports 
Failure to make it clear how to reproduce the problem 
Failure to say that you can't reproduce a problem 
Failure to check your report 
Failure to report timing dependencies 
Failure to simplify conditions 
Concentration on trivia 
Abusive language 

POOR TRACKING OR FOLLOW-UP 

Failure to provide summary reports 
Failure to re-report serious bugs 
Failure to verify fixes 
Failure to check for unresolved problems just before release 

  

  

USER INTERFACE ERRORS 

The user interface (UI) includes all aspects of the product that involve the user. The UI 
designer tries to strike a balance between 

●     functionality 
●     time to learn how to use the program 
●     how well the user remembers how to use the program 
●     speed of performance 
●     rate of user errors 
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●     the user's satisfaction with the program 

In seeking a good balance, the designer weighs the experience and needs of the people she 
expects to use the program against the capabilities of the equipment and available software 
technology. An error in the UI results in a suboptimal match between the user and the 
program. 

Because tradeoffs are unavoidable in UI design, a good designer might deliberately make 
any of many of the "errors" listed below. Don't take this list as gospel. If you are at all 
unsure, listen to the designer's reasoning before condemning one of her choices. See Baecker 
& Buxton (1987), Helander (1991), Laurel (1990, 1991), Rubenstein & Hersh, (1984), 
Schneiderman (1987), and Smith and Mosier (1984) for excellent introductions to user 
interface design, including extended discussion of many of the issues raised in this 
Appendix. 

Throughout this Appendix we write as if you were the user of the program. As a tester of it, 
you will certainly use it heavily. Realize that other people will also use the program and they 
will have different problems from you. Try to be empathetic. 

FUNCTIONALITY 
A program has a functionality error if something that you reasonably expect it to do is hard, 
awkward, confusing, or impossible. 

Excessive functionality 
This is an error (see Brooks, 1975). It is the hardest one to convince people not to make. 
Systems that try to do too much are hard to learn and easy to forget how to use. They lack 
conceptual unity. They require too much documentation, too many help screens, and too 
much information per topic. Performance is poor. User errors are likely but the error 
messages are too general. Here's our rule of thumb: A system's level of functionality is out of 
control if the presence of rarely used features significantly complicates the use of basic 
features. 

Inflated impression of functionality 
Manuals and marketing literature should never lead you to believe the program can do more 
than it can. 

Inadequacy for the task at hand 
Because a key feature isn't there, is too restricted or too slow, you can't use the program for 
real work. For example, a database management system that takes 8 hours to sort 1000 
records can claim sorting ability but you wouldn't want to use it. 

Missing function 
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A function was not implemented even though it was in the external specification or is 
"obviously" desirable. 

Wrong function
A function that should do one thing (perhaps defined in a specification) does something else. 

Functionality must be created by the user 
"Systems that supply all the capabilities the user could want but that also require the user to 
assemble them to make the product work are kits, not finished products." (Rubenstein & 
Hersh, 1984, p. 45.) 

Doesn't do what the user expects 
For example, few people would expect a program written to sort a list of names to sort them 
in ASCII order. They wouldn't expect it to count leading blanks or distinguish between 
uppercase and lowercase letters. If the programmers insist that the function should work this 
way, get them to change its name or add the expected behavior as an option. 

COMMUNICATION 
This section describes errors that occur in communication from the program to the user. Our 
model is an interactive program, with the person sitting at a computer or terminal. However, 
batch programs also give information, such as error messages. 

Missing information 
Anything you must know should be available onscreen. Onscreen access to any other 
information that the average user would find useful is also desirable. 

No onscreen instructions 
How do you find out the name of the program, how to exit it, and what key(s) to press for 
Help? If it uses a command language, how do you find the list of commands? The program 
might display this information only when it starts. However it does it, you should not have to 
look in a manual to find the answers to questions like these. 

Assuming printed documentation is readily available 
Can you use the program after losing your manual? An experienced user should not have to 
rely on printed documentation. 

Undocumented features 
If most features or commands are documented onscreen, all should be. Skipping only a few 
causes much confusion. Similarly, if the program describes "special case" behavior for many 
commands, it should document them all. 

States that appear impossible to exit 
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How do you cancel a command or back up in a deep menu tree? Programs should allow you 
to escape from undesired states. Failure to tell you how to escape is almost as bad as not 
providing an escape path. 

No cursor 
People rely on the cursor. It points to the place on the screen where they should focus 
attention. It can also show that the computer is still active and "listening." Every interactive 
program should show the cursor and display a salient message when turning the cursor off. 

Failure to acknowledge input 
An interactive program should acknowledge every keystroke by echoing it immediately on 
the screen. A few exceptions are not errors: 

●     When choosing a menu item, you are not confused if your keystroke is not echoed, as 
long as the next screen appears immediately and the words in the screen's title are 
identical to those of the menu choice. 

●     If the program ignores erroneous commands or keystrokes, it should not echo them. 
●     The program should honor your choice if you can tell it not to echo input. 
●     When you input your password or security code, the program should not echo it on 

the screen. 

Failure to show activity during long delays 
When a program is doing a long task (two seconds), it must show you that it's still working, 
it's not in an infinite loop, and you don't have to reset the computer. 

Failure to advise when a change will take effect 
A program may execute a command much sooner or later than you expect. For example, it 
may continue to display erased data until you exit. If it's unclear when the program will do 
something, customers will perceive it as having bugs and will make many errors. 

Failure to check for the same document being opened more than once 
Program that allows user to open multiple documents must check for the same document 
being opened more than once. Otherwise, the user will not be able to keep track of the 
changes made to the documents since they all have the same name. For example, the file 
My_Doc is open, if the user attempts to open My_Doc again, there must be the way for users 
to identify the first My_Doc versus the second one. A typical method for keeping track is to 
append a number after the file name such as My_Doc:1 and My_Doc:2 for the first and 
second file respectively. An alternative method is not to allow the same file to be opened 
twice. 

Wrong, misleading, or confusing information 
Every error trains you to mistrust everything else displayed by the program. Subtle errors 
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that lead readers to make false generalizations, such as missing qualifications and bad 
analogies, annoy testers more than clear factual errors because it's harder to get them fixed. 

Simple factual errors 
After a program changes, updating screen displays is a low priority task. The result is that 
much onscreen information becomes obsolete. Whenever the program changes visibly, check 
every message that might say anything about that aspect of the program. 

Spelling errors 
Programers dont woory much abuot they're speling misteaks but customers do. Get them 
fixed. 

Inaccurate simplifications 
In the desire to keep a feature description as simple as possible, the author of a message may 
cover only the simplest aspects of the feature's behavior, omitting important qualifications. 
When she tries to eliminate jargon, she may paraphrase technical terminology inaccurately. 
Look for these errors. As the tester, you may be the only technically knowledgeable person 
who carefully reviews the screens. 

Invalid metaphors 
Metaphors make the computer system seem similar to something you already know. They 
are good if they help you predict the behavior of the computer and bad if they lead you to 
incorrect predictions. For example, the trash can icon can be a bad metaphor (Heckel, 1984). 
If you can take a discarded file out of the trash can, the metaphor is correct. If the file is gone 
forever once moved to trash, a paper shredder is a better icon. 

Confusing feature names 
A command named SAVE shouldn't erase a file; nor should it sort one. If a command name 
has a standard meaning, in the computer community or in the English language, the 
command must be compatible with its name. 

More than one name for the same feature 
The program shouldn't refer to the same feature by different names. Customers will waste 
much time trying to figure out the difference between shadow and drop shadow when the 
programmer uses both to mean the same thing. 

Information overload 
Some documents and help screens swamp you with technical detail, to the point of hiding the 
information or confusing the answers you're looking for. If you think these details are useful, 
ask whether they are more appropriately located in an appendix in the manual. 

Some (not all) detailed discussions of program functioning are disguised apologies from the 
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programmer or complaints from a writer over a poor design. Do users need this information? 
Also, is there a solution to the problem the programmer is claiming to be insoluble? 

When are data saved? 
Suppose you enter information that the program will save. Does it save data as you type, 
when you exit, when you ask for a save, every few minutes, when? You should always be 
able to find this out. If you get confused answers, look for bugs immediately. Two modules 
probably make different assumptions about when the same data will be saved. You can 
probably get one of them to claim that outdated data are up to date. You may find one 
module erasing or overwriting data that another has just saved. 

Poor external modularity 
External modularity refers to how modular the product appears from the outside. How easily 
can you understand any one piece of it? Poor external modularity increases learning time and 
scares away new users. Information should be presented as independently as possible. The 
less you need to know in order to do any particular task the better. 

Help text and error messages 
Help text and error messages are often considered minor pieces of the product. They may be 
written by junior programmers or writers. Updating them may be given low priority. 

You ask for help or run into error handlers when confused or in trouble.You may be upset or 
impatient. You will not suffer bad messages gladly. The product will build credibility with 
you as you use it. If some messages mislead you, the rest may as well not be there. 

Inappropriate reading level 
People don't read as well at computer terminals (see Schneiderman, 1987). When given their 
choice of reading levels for onscreen tutorials, experimental subjects preferred Grade 5 
(Roehmer and Chapanis, 1982). People reading help or error messages may be distressed: 
these messages should never be more complicated than tutorial text. Messages should be 
phrased simply, in short, active voice sentences, using few technical terms even if the readers 
are computer-experienced. 

Verbosity 
Messages must be short and simple. Harried readers are infuriated by chatty technobabble. 
When some users need much more information than others, it's common to give access to 
further information by a menu. Let people choose where and how much further they want to 
investigate (Houghton, 1984). 

Inappropriate emotional tone 
People feel bad enough when they make an error or have to ask for help. They don't need 
their noses rubbed in it. Look for messages that might make some people feel bad. 
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Exclamation marks can be interpreted as scolding, so they should not be in error messages. 
Violent words like "abort," "crash," and "kill" may be frightening or distasteful. Even the 
word "error" is suspect: many "errors" wouldn't be if the program (or the programmer) were 
more intelligent. As a final note, many actions may be invalid or unexpected at a computer, 
but few are truly "illegal." 

Factual errors 
Help and error messages often give incorrect examples of how to do something "correctly." 
Some are outdated. Others were never right. Every message should be (re)checked in one of 
the last testing cycles. 

Context errors 
Context-sensitive help and error handlers check what you've been doing. They base their 
messages (recommendations, menu lists, etc.) on that context. This is excellent when it 
works, but the message makes no sense when they get the context wrong. 

Failure to identify the source of an error 
At a minimum, an error message should say what's wrong, and unless it's immediately 
obvious, repeat or point to the erroneous input (data, program line, whatever). A good error 
message will also say why something is wrong and what to do about it. 

Hex dumps are not error messages 
An error message that merely says Error 010 or dumps one or more lines of hexadecimal 
(octal, even decimal) data is acceptable only if the cost of printing a message is outrageous, 
the computer doesn't have enough time to print a real message before it crashes, or the 
programmer is the only person who will ever read it. 

Forbidding a resource without saying why 
If a program tries to use a printer, modem, more memory, or other resource, and can't, the 
error message should not only announce the failure but should also say why. You need this 
information because you'll respond differently to Printer already in use versus Printer not 
connected. 

Reporting non-errors 
Error messages should only be triggered by error states. You will ignore all error messages if 
most are normal-case debug messages or reports of events that are rare but not necessarily 
due to a bug. 

Display bugs 
Display bugs are visible. If you see many, you are less likely to buy or trust the program. 
Unfortunately, display bugs are often considered minor and not even investigated. This is 
risky. They may be symptoms of more serious underlying errors. 
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Two cursors 
It is a nuisance if the programmer forgets to erase the old cursor when he jumps to another 
part of the screen. Worse, a second cursor might reflect confusion in the code about which 
area of the screen is active. The program may misinterpret inputs even it echoes them 
correctly. If the cursor misbehaves during a test, save and examine any data that you enter. 

Disappearing cursor 
The cursor usually disappears because the programmer displayed a character on top of it or 
moved it and forgot to redisplay it. However, a program's pointer to the cursor can be 
corrupted. If it is, then when it points to a memory location used for data or program storage 
rather than to screen memory, you won't see the cursor. The program will overwrite 
information in memory whenever it tries to display the cursor. 

Cursor displayed in the wrong place 
The program shows the cursor in one place but echoes inputs, etc., in another. This is 
annoying because it leads you to focus on the wrong part of the screen. A slightly misplaced 
cursor may warn that the program will truncate entered character strings or pad them with 
garbage. As with dual cursors, entered text may be echoed correctly but saved incorrectly. 

Cursor moves out of data entry area 
The cursor should never move out of data entry areas. This is usually a coding error but 
some programmers deliberately let you move the cursor anywhere on the screen, then beep 
and display an error message that says you can't enter anything here. This is a design error. 

Writing to the wrong screen segment 
The cursor is in the right location, but data are displayed in the wrong place on the screen. 

Failure to clear part of the screen 
A message is displayed for a few seconds, then only partially erased. Or your response to a 
previous question is left onscreen. It is confusing and annoying to have to type over prompts 
or irrelevant responses in order to enter something new. 

Failure to highlight part of the screen 
If a program usually highlights a particular class of items, such as prompts or all text in the 
active window, it must always do so. 

Failure to clear highlighting 
This is common when attributes of screen positions are stored separately from displayed text. 
The programmer removes highlighted text but forgets to clear highlighting from that area of 
the screen. The error is most confusing when the program highlights with double intensity or 
boldfacing (as opposed to inverse video, for example). The blank screen area looks fine. The 
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problem only becomes evident when new text is displayed: it is always highlighted. 

Wrong or partial string displayed 
The displayed message might be garbage text, a segment of a longer message, or a complete 
message that should appear some other time. Any of these might reflect errors in the 
program logic, the values of the pointers used to find message text, or the stored copies of 
the text. They might indicate minor problems or severe ones. 

Messages displayed for too long or not long enough 
Many messages are displayed for a fixed time, then erased automatically. The message 
should be onscreen long enough to be noticed and then read. Unimportant messages can be 
cleared sooner than critical ones. Short messages can go sooner than long ones. Messages 
that come up frequently and are easily recognized can be displayed for less time than rare 
ones. 

Be suspicious when the same message sometimes displays briefly and sometimes lasts 
longer. This may reflect unanticipated race conditions. Try to figure out how to obtain which 
delays, then get this looked into carefully by the programmer. 

Display layout 
The screen should look organized. It should not be cluttered. Different classes of objects 
should be displayed separately, in predictable areas. There are many guidelines for display 
layout, but they boil down to this: it should be easy to find what you want on the screen. 

Poor aesthetics in the screen layout 
The screen may be unbalanced, rows or columns may not be aligned, or it might just look 
"bad." Use your good taste. If you're not confident, get a second opinion. If it looks badly 
laid out to you, something is probably wrong even if you can't articulate the problem yet. 

Menu layout errors 
Schneiderman (1987) and Smith and Mosier (1984) cover this area well. Their discussions 
run to many more pages than are available here. Here are a few points that we want to 
emphasize: 

●     Similar or conceptually related menu choices should be grouped. Groups should be 
clearly separated. 

●     The action required to select a menu item should be obvious or should be stated 
onscreen. 

●     Menu selections should generally be independent. To achieve a single result, the 
customer shouldn't have to make two or more different selections on different menus. 

●     Selecting a menu item by typing its first letter is usually better than selecting it by a 
number. However, all items have to start with different letters for this to work well. 
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Watch out for assignments of odd names to menu items. 

Dialog box layout errors 

For further reference in this area, we recommend IBM's SAA Advanced Interface 
Design Guide (1989), and SAA Basic Interface Design Guide (1989), and Apple's 
Human Interface Guidelines (1987). 

●     Dialog boxes should operate consistently. For example, they should use consistent 
capitalization, spelling, and text justification rules.Dialog box titles should occupy a 
consistent place and match the name of the command used to call up the dialog. The 
same shortcut keys should work from dialog to dialogó shouldn't cancel out of some 
dialogs (no changes made) but complete (all changes accepted) others. 

●     Controls in the dialog box must be arranged logically. Group related controls 
together, and separate groups by using proper spacing. 

●     Selection and entry fields should be aligned vertically and horizontally so users can 
navigate the cursor movement in a straight-line pattern. 

●     Watch out for interdependencies across dialogs. It is confusing when a selection in 
one dialog box determines which options are available in another box. 

Obscured instructions 
You should always know where to look to find out what to do next. If the screen is at all 
crowded, an area should be reserved for commands and messages. Once you understand this 
convention, you'll know where to focus attention. It may also be good to blaze critical 
information across the center of the screen, no matter what used to be there. 

Misuse of flash 
Flashing pictures or text are noticeable; lots of flashing is confusing and intimidating. You 
should be able to tell immediately why an object is flashing. Excessive or ambiguous 
flashing is an eyesore, not a good alert. 

Misuse of color 
Too much color can be distracting, make the text harder to read, and increase eye strain. 
Color shouldn't make the screen look busy or distracting. Programs like word processors, 
spreadsheets, and databases should use highlighting colors sparingly. Most text should be 
one color. You should also complain if the program's combinations of colors looks ugly. 

Heavy reliance on color 
Programs limit their audience severely if they use color as the only differentiator between 
items. What happens to a colorblind person or someone with a monochrome monitor? A few 
applications may not be worth running in monochrome, but many others (including drawing 
programs and many games) don't need color. 
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Inconsistent with the style of the environment 
If the style associated with a computer offers certain consistencies and conveniences, you'll 
notice their absence from any one program. Even if the programmer thinks he can replace 
them with "better" ones, many people will resent having to learn a new series of conventions. 
For example, if the operating system and most applications are mouse and icon-based, an 
application that requires typed command words will feel inappropriate. New programs 
should also follow the lead when most others display error messages in a certain way, on a 
certain place onscreen. 

Cannot get rid of onscreen information 
It's great (often essential) to have a menu of command choices available on part of the 
screen. However, once you become proficient with the program, the menu is a waste of 
screen space. You should be able to issue a command to get rid of it, and another to call it 
back as needed. 

COMMAND STRUCTURE AND ENTRY 
This section deals with the way the program organizes commands and presents them to you, 
and with how you enter those commands. Schneiderman (1987) considers how to choose 
among the different command entry styles. There are many choices. This section assumes 
that the programmer's choice of style was reasonable. It deals only with flaws in the 
implementation. 

Inconsistencies 
Increasing the number of always-true rules shortens learning time and documentation and 
makes the program more professional-looking. Inconsistencies are so common because it 
takes planning and agony to choose a rule of operation that can always be followed. It is so 
tempting to do things differently now and again. Each minor inconsistency seems 
insignificant, but together they quickly make an otherwise well conceived product hard to 
use. It is good testing practice to flag all inconsistencies, no matter how minor. 

"Optimizations" 
Programmers deliberately introduce inconsistencies to optimize a program. Optimizations 
are tempting since they tailor the program to your most likely present need. But each new 
inconsistency brings complexity with it. Make the programmer aware of the tradeoff in each 
case. Is saving a keystroke or two worth the increase in learning time or the decrease in 
trust? Usually not. 

Inconsistent syntax 
Syntactic details should be easily learned. You should be able to stop thinking about them. 
Syntax of all commands should be consistent throughout the program. Syntax includes such 
things as: 
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●     the order in which you specify source and destination locations (copy from source to 
destination or copy to destination from source) 

●     the type of separators used (spaces, commas, semicolons, slashes, etc.) 
●     the location of operators (infix (A+B), prefix (+AB), postfix (AB+)). 

Inconsistent command entry style 
You can select a command by pointing to it, pressing a function key, or typing its name, 
abbreviation, or number. A program should use one command style. If the program offers 
alternative styles for doing the same task, it should offer the same alternatives everywhere. If 
the program must switch styles across different parts of the program, it must make it clear 
when to use which. 

Inconsistent abbreviations 
Without clear-cut abbreviation rules, abbreviations can't be easily remembered. Abbreviating 
delete to del but list to ls and grep to grep makes no sense. Each choice is fine individually, 
but the collection is an ill-conceived mess of special cases. 

Inconsistent termination rule 
Fill-in-the-blanks forms only allow so much room for a command name or data item. 
Suppose an entry can be eight characters long. When you enter seven characters or less, you 
have to say you're done by pressing or some other terminator (, , , etc.). If you enter an eight-
character name, some programs act on it without waiting for the terminator. This is 
confusing. 

The program should require terminators for multi-key entries. People rarely remember 
commands (or data) in terms of how many letters they are. They will habitually enter the 
eighth character then press . If the program has already supplied its own , the extra one typed 
by the user is an annoying input "error." 

Inconsistent command options 
If an option makes sense for two commands, it should be available with both (or neither), 
should have the same name, and should be invoked in the same sequence in both cases. 

Similarly named commands 
It is easier to confuse two different commands if their names are similar. 

Inconsistent capitalization 
If command entry is case sensitive, first letters of all commands should all be capitalized or 
none should be. First letters of embedded words in commands should always or never be 
capitalized. 

Inconsistent menu position 
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It's hard to keep the same command in the same position on different menus if it occurs in 
many submenus, but with work and care the programmer can frequently achieve this. 

Inconsistent function key usage 
The meaning of function keys should remain constant across the program. Reversals 
(sometimes saves data and deletes, other times deletes and saves) are unacceptable. 

Inconsistent error handling rules 
When the program detects an error, it may announce it or attempt to correct it. After 
handling the error, the program may stop, restart, or return to its last state. The error handler 
may change data on disk or save new information. Error handlers can vary a great deal. The 
behavior of any one program's should be completely predictable. 

Inconsistent editing rules 
The same keys and commands should be available to change any datum as you entered it or 
examined it later. 

Inconsistent data saving rules 
The program should save data in the same way everywhere, with the same timing and scope. 
It shouldn't sometimes save data as each field is entered, but other times save at the end of a 
record, a group of records, or just before exit. 

Time-wasters 
Programs that seem designed to waste your time infuriate people. 

Garden paths 
A program leads you down the garden path if you must make choice after choice to get to a 
desired command, only finding at the end that it's not there, wasn't implemented, or can't be 
used unless you do something else (down a different path) first. Look for these problems in 
complex menu trees. 

Choices that can't be taken 
There is no excuse for including choices in a menu that cannot be made. How can you view, 
save or erase the data if there are no data? How can you print the document if there is no 
printer? How dare the programmer say, Press for Help, then when you press it say, Sorry, 
Help Not Available at this Level (whatever that means)? 

Are you really, really sure? 
Programs should ask you to confirm critically destructive commands. You should have to 
tell the computer twice to reformat a data-filled disk. The program should not pester you for 
confirmation of every little deletion. You become annoyed; you'll learn to answer Yes 
automatically, even in the critical cases when you should think first. 
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Obscurely or idiosyncratically named commands 
Command names should be informative. You should not have to constantly look up the 
definition of a command name in the manual, until you eventually memorize it. There is no 
excuse for names like grep, finger, and timehog in products released to the public. 

Menus 
Menus should be simple, but they become complex when there are poor icons or command 
names and when choices hide under nonobvious topic headings. The more commands a 
menu covers, the more complex it will be no matter how well planned it is. But without 
planning, complex menus can become disasters. 

Excessively complex menu hierarchy 
If you have to wade through menu after menu before finally reaching the command you 
want, you'll probably want to use another program. Programmers who create deep menu 
trees cite the design rule that says no menu should have more than seven choices. This may 
be best for novices. Experienced users prefer many more choices per menu level, make fewer 
errors and respond more quickly, so long as the choices are well organized, neatly formatted, 
and not ridiculously crowded or abbreviated. Paap & Roske-Hostrand (1986) and 
MacGregor, Lee, & Lam (1986) provide some interesting discussion. 

Inadequate menu navigation options 
In even a modestly deep menu structure, you must be able to move back to the previous 
menu, move to the top of the menu structure, and leave the program at any time. If there are 
hundreds of topics, you should also be able to jump directly to any topic by entering its name 
or number. 

Too many paths to the same place 
The program needs reorganization if many commands reappear in many menus. It can be 
handy to have a command repeated in different places, but there are limits. You should 
worry about the program's internal structure and reliability if it feels like you can get 
anywhere from anywhere. 

You can't get there from here 
Some programs lock you out of one set of commands once you've taken a different path. You 
have to restart to regain access to them. This is usually unnecessary. 

Related commands relegated to unrelated menus 
Grouping commands or topics in a complex menu is not easy. It is easy to overlook what 
should be an obvious relationship between two items, and to arbitrarily assign them to 
separate menus. When you report these, explain the relationship between the two items, and 
suggest which menu both belong in. 
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Unrelated commands tossed under the same menu 
Some commands are dumped under a totally unrelated heading because someone thought it 
would take too much work to put them where they belong, which may involve adding a new 
higher level heading and reorganizing. 

Command lines 
It is harder to type the command name without a hint than to recognize it in a menu, but 
experienced users prefer command line entry when there are many commands and many 
options. The menu system feels too bulky to them. Anything that makes it easier to 
remember the command names and options correctly is good. Anything that makes errors 
more likely is bad. 

Forced distinction between uppercase and lowercase 
Some programs won't recognize a correctly spelled command name if it isn't capitalized 
"correctly." This is more often a nuisance than a feature. 

Reversed parameters 
The most common example is the distinction between source and destination files. Does 
COPY FILE1 FILE2 mean copy from FILE1 to FILE2 or from FILE2 to FILE1? The order 
doesn't matter (people can get used to anything) as long as it stays consistent across all 
commands that use a source and a destination file. Application programs must follow the 
operating system's ordering conventions. 

Full command names not allowed 
Abbreviations are fine, but you should always be able to type delete, not just del. The full 
name of a command is much more reliably remembered than the abbreviation, especially if 
there are no consistent abbreviating rules. 

Abbreviations not allowed 
You should be able to enter del instead of having to type delete in full. Enough systems don't 
allow abbreviations that we can't class their absence a design error, but, implemented 
properly, it sure is a nice feature. 

Demands complex input on one line 
Some programs require complicated command specifications (Do X for all cases in which A 
or B and C is true unless D is false). You will make many mistakes if you have to specify 
compound logical operators as part of a one-line command. Fill-in-the-blank choices, 
sequential prompting, and query by example, are all more appropriate than command line 
entry with compound logical scope definition. 

No batch input 
You should be able to type and correct a list of commands using an editor, then tell the 
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computer to treat this list as if you had typed each command freshly at the keyboard. 

Can't edit commands 
You should be able to backspace while typing a command. If you try to execute an 
incorrectly typed command, you should be able to call it back, change the erroneous piece, 
and re-execute it. 

Inappropriate use of the keyboard 
If a computer comes with a standard keyboard, with labeled function keys that have standard 
meanings, new programs should meet that standard. 

Failure to use cursor, edit, or function keys 
It doesn't matter if a program was ported from some other machine that doesn't have these 
keys. Users of this machine will expect their keys to work. 

Non-standard use of cursor and edit keys 
The keys should work the way they usually work on this machine, not the way they usually 
work on some other machine, and definitely not in some totally new way. 

Non-standard use of function keys 
If most other programs use as the Help key, defining it as Delete-File-And-Exit in this 
program is crazy or vicious. 

Failure to filter invalid keys 
The program should trap and discard invalid characters, such as letters if it adds numbers. It 
should not echo or acknowledge them. Ignoring them is less distracting than error messages. 

Failure to indicate keyboard state changes 
Lights on the keyboard or messages on the screen should tell you when Caps Lock and other 
such state changing features are on. 

Failure to scan for function or control keys 
You should be able to tell the computer to quit what it's doing (, for example). The program 
should also always recognize any other system-specific keys, such as , that programs on this 
machine usually recognize quickly. 

MISSING COMMANDS 
This section discusses commands or features that some programs don't, but should, include. 

State transitions 
Most programs move from state to state. The program is in one state before you choose a 
menu item or issue a command. It moves into another state in response to your choice. 
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Programmers usually test their code well enough to confirm that you can reach any state that 
you should be able to reach. They don't always let you change your mind, once you've 
chosen a state. 

Can't do nothing and leave 
You should be able to tell an interactive program that you made your last choice by mistake, 
and go back to its previous state. 

Can't quit mid-program 
You should be able to quit while using a program without adversely affecting stored data. 
You should be able to stop editing or sorting a file, and revert to the version that was on disk 
when you started. 

Can't stop mid-command 
It should be easy to tell the program to stop executing a command. It shouldn't be hard to 
return to your starting point, to make a correction or choose a different command. 

Can't pause 
Some programs limit the time you have to enter data. When the time is up, the program 
changes state. It might display help text or accept a displayed "default" value, or it may log 
you off. Although time limits can be useful, people do get interrupted. You should be able to 
tell it that you are taking a break, and when you get back you'll want it in the same state it's 
in now. 

Disaster prevention 
System failures and user errors happen. Programs should minimize the consequences of 
them. 

No backup facility 
It should be easy to make an extra copy of a file. If you're changing a file, the computer 
should keep a copy of the original (or make it easy for you to tell it to keep it) so you have a 
known good version to return to if your changes go awry. 

No undo 
Undo lets you retract a command, typically any command, or a group of them. Undelete is a 
restricted case of undo that lets you recover data deleted in error. Undo is desirable. Undelete 
is essential. 

No "Are you sure?" 
If you issue a command that will wipe out a lot of work, or that wipes out less but is easy to 
issue in error, the program should stop you and ask whether you want the command 
executed. 
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No incremental saves 
When entering large amounts of text or data, you should be able to tell the program to save 
your work at regular intervals. This ensures that most of your work will have been saved if 
the power fails. Several programs automatically save your work in progress at regular 
intervals. This is an excellent feature, so long as the customer who is bothered by the delay 
during saving can turn it off. 

Error handling by the user 
People can catch their own errors and recognize from experience that they are prone to 
others. They should be able to fix their work and, as much as possible, build in their own 
error checks. 

No user-specifiable filters 
When designing data entry forms, spreadsheet templates, etc., you should be able to specify, 
for each field, what types of data are valid and what the program should ignore or reject. As 
examples, you might have the program reject anything that isn't a digit, a letter, a number 
within a certain range, a valid date, or an entry that matches an item in a list stored on disk. 

Awkward error correction 
It should be easy to fix a mistake. You should never have to stop and restart a program just 
to return to a data entry screen where you made an error. You should always be able to back 
up the cursor to a field on the same screen in which you entered, or could have entered, data. 
When entering a list of numbers, you should be able to correct one without redoing the rest. 

Can't include comments 
When designing data entry forms, spreadsheet templates, expert systemsóanything in which 
you are, in effect, writing a programóyou should be able to enter notes for future reference 
and debugging. 

Can't display relationships between variables 
Variables in entry forms, spreadsheet templates, etc., are related. It should be easy to 
examine the dependence of any variable on the values of others. 

Miscellaneous nuisances 

Inadequate privacy or security 
How much security is needed for a program or its data varies with the application and the 
market. On multi-user systems you should be able to hide your files so no one else can see 
them, and encrypt them so no one elseónot even the system administratorócan read them. 
You should also be able to lock files so no one else can change (or delete) them. Beizer 
(1984) discusses security in more detail. 
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Obsession with security 
The security controls of a program should be as unobtrusive as possible. If you are working 
at your own personal computer at home, you should be able to stop a program from pestering 
you for passwords. 

Can't hide menus 
Many programs display a menu at the top, bottom, or side of the screen. They use the rest of 
the screen for data entry and manipulation. The menus are memory aids. Once you know all 
the commands you need, you should be able to remove the menus and use the full screen for 
entry and editing. 

Doesn't support standard O/S features 
For example, if the operating system uses subdirectories, program commands should be able 
to reference files in other subdirectories. If the O/S defines "wildcard" characters (such as * 
to match any group of characters), the program should recognize them. 

Doesn't allow long names 
Years ago, when memory was scarce and compilers were sluggish, it was necessary to limit 
the length of file and variable names to six or eight characters. We're past those days. 
Meaningful names are among the best possible forms of documentation. They should be 
allowed. 

PROGRAM RIGIDITY 
Some programs are very flexible. You can change minor aspects of their functioning easily. 
You can do tasks in any order you want. Other programs are utterly inflexible. Rigidity isn't 
always bad. The fewer choices and the more structured the task, the more easily (usually) 
you'll learn the program. And you won't be confused by aspects of a program's operation that 
can't be changed without affecting the others. On the other hand, different people will like 
different aspects of the program and dislike others. If you change these to suit your taste, 
you'll like the program more. 

User tailorability 
You should be able to change minor and arbitrary aspects of the program's user interface 
with a minimum of fuss and bother. 

Can't turn off the noise 
Many programs beep when you make errors and provide a loud key click that sounds every 
time you touch the keyboard. Auditory feedback is useful but in shared work areas, computer 
noises can be annoying. There must be a way to turn them off. 

Can't turn off case sensitivity 
A system that can distinguish between uppercase and lowercase should allow you to tell it to 
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ignore cases. 

Can't tailor to hardware at hand 
Some programs are locked to input/output devices that have specific, limited capabilities. 
People who upgrade their equipment either can't use these programs or can't take advantage 
of the new devices' features. Experienced users should be able to tailor a program to the 
hardware. You should be able to change control codes sent to a printer and copy a program 
onto any mass storage device. It should not be impossible to use a mouse with any 
interactive program. 

Can't change device initialization 
An application program should either be able to send user-defined initializers or it should 
leave well enough alone. Suppose you want to send control codes to a printer to switch to 
condensed characters. If the program that prints the data doesn't let you initialize the printer, 
you have to change the printer mode from the device, then run the program. Some programs, 
however, defeat your printer setup by always sending the printer their own, inflexible, set of 
control codes. This is a design error. 

Can't turn off automatic saves 
Some programs protect you against power failures by automatically saving entered data to 
disk periodically. In principle this is great but in practice the pauses while it saves the data 
can be disruptive. Also, the program assumes that you always want to save your data. This 
assumption might not be true. You should be able to turn this off. 

Can't slow down (speed up) scrolling 
You should be able to slow down the screen display rate so you can read text as it scrolls by. 

Can't do what you did last time 

Can't find out what you did last time 
You should be able to re-issue a command, examine it, or edit it. 

Failure to execute a customization command 
If the program lets you change how it interacts with you, your changes should take effect 
immediately. If a restart is unavoidable, the program should say so. You should not have to 
wonder why a command wasn't executed. 

Failure to save customization commands 
You should not only be able to tell the computer to turn off its beeps and clicks now, but 
should also be able to tell it to turn them off and keep them off forever. 

Side-effects of feature changes 
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Changing how one feature operates should not affect another. When there are side effects, 
they should be well documented when you change the feature setting, in the manual and 
onscreen. 

Infinite tailorability 
You can change virtually all aspects of some programs. This flexibility can be good, but you 
have to step back from the program to figure out how it should work. To make the decisions 
intelligently you have to develop an expert user's view of the program itself along with 
learning the command language. 

Programs this flexible usually have horrid user interfaces. The developers spent their energy 
making the program adjustable, and didn't bother making the uncustomized product any 
good. Since everyone will change it, they reason, its initial command set doesn't mean 
anything anyway. Such a program is terrible for novices and occasional users. It isn't worth 
their time (sometimes weeks or months) to figure out how to tune the program to their needs, 
but without the tuning, the program is only marginally usable. 

The user interface of customizable products should be fully usable without modification. 
You should subject it to the same rigorous criticism applied to less flexible ones. Many 
people will use the uncustomized version for a long time. 

Who's in control 
Some programs are high-handed. Their error and help messages are condescending. Their 
style is unforgivingóyou can't abort commands or change data after entering them. None of 
this is acceptable. Programs should make it easier and more pleasant for you to get a task 
done as quickly as possible. They should not second-guess you, force a style on you, or 
waste your time. 

Unnecessary imposition of a conceptual style 
Some programs demand that you enter data in a certain order, that you complete each task 
before moving to the next, that you make decisions before looking at their potential 
consequences. Examples: 

●     When designing a data entry form, why must you specify a field's name, type, width, 
or calculation order, before drawing it onscreen? As you see how the different fields 
look together, won't you change some fields, move them around, even get rid of a 
few? You may have to enter field specifications before using the form, but subject to 
that restriction, you should decide when to fill in the details. 

●     When describing tasks to a project management system, why must you list all tasks 
first, all available people second, then completely map the work assigned to one 
individual before entering any data for the next? Since you're probably trying to 
figure out what to assign to whom, won't you want to change these data as you see 
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their consequences? 

A surprising number of limits exist because some programmer decided that people should 
organize their work in a certain way. For "their own good" he won't let them deviate from 
this "optimal" approach. He is typically wrong. 

Novice-friendly, experienced-hostile 
Programs optimized for novices break tasks into many small, easily understood steps. This 
can be good for the newcomer, but anyone experienced with the system will be frustrated if 
they can't get around it. 

Artificial intelligence and automated stupidity 
In the names of "artificial intelligence" and "convenience" some programs guess what you 
want next and execute those guesses as if they were user-issued commands. This is fine 
unless you don't want them done. Similarly, the program that automatically corrects errors is 
great until it "corrects" correct data. People make enough of their own mistakes without 
having to put up with ones made by a program that's trying to second-guess them. Better than 
automatic execution, especially of something that takes noticeable time or changes data, the 
program should give you a choice. You should be able to set it to wait until you type Y (yes) 
before executing its suggestions. If you say No the program should abandon its suggestion 
and ask for new input. 

Superfluous or redundant information required 
Some programs ask for information they'll never use, or that they'll only use to display 
onscreen once, or ask you to re-enter data you've already enteredónot to check it against the 
old copy, just to get it again. This is a surprisingly common waste of time. 

Unnecessary repetition of steps 
Some programs make you re-enter the works if you make one mistake in a long sequence of 
command steps or data. Others force you to re-enter or confirm any command that might be 
in error. To do something "unusual" you may have to confirm every step. Repetitions or 
confirmations that are not essential are a waste of your time. 

Unnecessary limits 
Why restrict a database to so many fields or records, a spreadsheet cell to digits only, a 
project manager to so many tasks, a word processor to so many characters? Limits that aren't 
essential for performance or reliability shouldn't be limits. 

PERFORMANCE 
Many experienced users consider performance the most important aspect of usability: with a 
fast program, they feel more able to concentrate and more in control. Errors are less 
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important because they can be dealt with quickly. With few exceptions, reviewed by 
Schneiderman (1987), the faster the better. 

Performance has different definitions, such as: 

●     Program Speed: how quickly the program does standard tasks. For example, how 
quickly does a word processor move to the end of the file? 

●     User Throughput: how quickly you can do standard tasks with the program. These are 
larger scale tasks. For example, how long does it take to enter and print a letter? 

●     Perceived Performance: How quick does the program seem to you? 

Program speed is a big factor no matter how you define performance, but a fast program with 
a poorly designed user interface will seem much slower than it should. 

Slow program 
Many design and code errors can slow a program. The program might do unnecessary work, 
such as initializing an area of memory that will be overwritten before being read. It might 
repeat work unnecessarily, such as doing something inside a loop that could be done outside 
of it. Design decisions also slow the program, often more than the obvious errors. 

Whatever the reason for the program being slow, if it is, it's a problem. Delays as short as a 
quarter of a second can break your concentration, and substantially increase your time to 
finish a task. 

Slow echoing 
The program should display inputs immediately. If you notice a lag between the time you 
type a letter and the time you see it, the program is too slow. You will be much more likely 
to make mistakes. Fast feedback is essential for any input event, including moving mice, 
trackballs, and light pens. 

How to reduce user throughput 
A lightning quick program will be molasses for getting things done if it slows the person 
working with it. This includes: 

●     anything that makes user errors more likely. 
●     slow error recovery, such as making you re-enter everything if you make a mistake 

when entering a long series of numbers or a complicated command. 
●     anything that gets you so confused that you have to ask for help or look in the 

manual. 
●     making you type too much to do too little: no abbreviations, breaking a task into tiny 

subtasks, requiring confirmation of everything, and so on. 
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Other sections of the Appendix describe specific errors along these lines. One tactic for 
applying pressure to fix user interface errors involves a comparative test of user throughput. 
Compare the product under development with a few competitors. If people take longer to do 
things with your program, and if much of the delay can be attributed to user interface design 
errors, these errors take on a new significance. 

Poor responsiveness 
A responsive program doesn't force you to wait before issuing your next command. It 
constantly scans for keyboard (or other) input, acknowledges commands quickly, and assigns 
them high priority. For example, type a few lines of text while your word processor is 
reformatting the screen. It should stop formatting, echo the input, format the display of these 
lines as you enter them, and execute your editing commands. It should keep the area of the 
screen near the cursor up to date. The rest is lower priority since you aren't working with it at 
this instant. The program can update the rest of the display when you stop typing. 
Responsive programs feel faster. 

No type-ahead 
A program that allows type-ahead lets you keep typing while it goes about other business. It 
remembers what you typed and displays and executes it later. You should not have to wait to 
enter the next command. 

No warning that an operation will take a long time 
The program should tell you if it needs more than a few seconds to do something. You 
should be able to cancel the command. For long jobs, it should tell you how long so you can 
use the time rather than waste it waiting. 

No progress reports 
For long tasks or delays, it is very desirable to indicate how much has been done and how 
much longer the machine will be tied up (Myers, 1985). 

Problems with time-outs 
Some programs limit the time you have to enter data. When the time's up, the program 
changes state. Except for arcade games, you should not have to race against a short time-out 
to stop the program from executing an undesired command. 

Time-outs can also be too long. For example, you might have a short interval before a 
program does something reasonable but time consuming. If you respond during the interval, 
you shortcut the task (e.g., a menu isn't displayed unnecessarily). Program speed will suffer 
if this isn't kept short. 

Time-out intervals can simultaneously be too long for people who wait them out and too 
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short for others who try to enter data during them. 

Program pesters you 
BEEP! Are you sure? 
BEEP! Your disk is now 85% full. Please swap disks shortly. 
BEEP! Are you really sure? 
BEEP! You haven't saved your text for the last hour. 
BEEP! Your disk is now 86% full. Please swap disks shortly. 
BEEP! Please re-enter your security code. 
BEEP! You haven't entered anything for 10 minutes. Please log off. 
BEEP! Your disk is now 86% full. Please swap disks shortly. 
BEEP! 14 messages still unanswered. 

Reminders, alerts, and queries can be useful but if they are frequent they can be annoying. 

Do you really want help and graphics at 300 baud? 
On a slow terminal, help text, long menus, and pretty pictures are usually irritating. You 
should be able to use a terse command language instead. Similarly, programs that format 
output in a beautiful but time-consuming way on a printer should have a "fast and ugly" 
mode for drafts. 

OUTPUT 
Program output should be as complete as desired and intelligible to the human or program 
that must read it. It should include whatever you want, in whatever format you want. It 
should go to whatever device you want it to go. These requirements are real, but too general 
to (usually) achieve. You'll probably add many other annoyances and limitations to the 
following list. 

Can't output certain data 
You should be able to print any information you enter, including technical entries like 
formulas in spreadsheets and field definitions. If it's important enough to enter, it's important 
enough for you to be able to print and desk check it. 

Can't redirect output 
You should be able to redirect output. In particular, you should be able to send a long 
"printout" to the disk and print this disk file later. This gives you the opportunity to polish 
the output file with a word processor or print it with a program that can print files more 
quickly or as a background task. 

The program should not stop you from sending output to unexpected devices, such as 
plotters, laser printers, and cassette tapes. 
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Format incompatible with a follow-up process 
If one program is supposed to be able to save data in a format that a second can understand, 
you must test that it does. This means buying or borrowing a copy of the second program, 
saving the data with the first, reading it with the second, and looking at what the second 
program tells you it got. This test is all too often forgotten, especially when the second 
program was not made by the company that developed the first. 

Must output too little or too much 
You should be able to modify reports to present only the information you need. Having to 
dig through pages of printouts that contain just a few lines of useful information is nearly as 
bad as not getting the information. 

Can't control output layout 
You should be able to emphasize information by changing fonts, boldfacing, underlining, 
etc. You should also be able to control the spacing of information; that is, you should be able 
to group some sections of information and keep others separate. At a minimum, the program 
should be able to print reports to a disk file, in a format suitable for touchups by a word 
processor. 

Absurd printed level of precision 
It is silly to say that 4.2 + 3.9 is 8.100000 or that the product of 4.234 and 3.987 is 
16.880958. In final printouts, the program should round results to the precision of the 
original data, unless you tell it to do otherwise. 

Can't control labeling of tables or figures 
You should be able to change the typeface, wording, and position of any caption, heading, or 
other text included in a table, graph or chart. 

Can't control scaling of graphs 
Graphing programs should provide default vertical and horizontal scales, but you should be 
able to override the defaults.   

ERROR HANDLING 
Errors in dealing with errors are among the most common bugs. Error handling errors 
include failure to anticipate the possibility of errors and protect against them, failure to 
notice error conditions, and failure to deal with detected errors in a reasonable way. Note that 
error messages were discussed above. 

ERROR PREVENTION 
Yourdon's (1975) chapter on Antibugging is a good introduction to defensive programming. 
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The program should defend itself against bad input and bad treatment by other parts of the 
system. If the program might be working with bad data, it should check them before it does 
something terrible. 

Inadequate initial state validation 
If a region of memory must start with all zeros in it, maybe the program should run a spot 
check rather than assuming that zeros are there. 

Inadequate tests of user input 
It is not enough to tell people only to enter one- to three-digit numbers. Some will enter 
letters or ten-digit numbers and others will press five times to see what happen. If you can 
enter it, the program must be able to cope with it. 

Inadequate protection against corrupted data 
There's no guarantee that data stored on disk are any good. Maybe someone edited the file, 
or there was a hardware failure. Even if the programmer is sure that the file was validated 
before it was saved, he should include checks (like a checksum) that this is the same file 
coming back. 

Inadequate tests of passed parameters 
A subroutine should not assume that it was called correctly. It should make sure that data 
passed to it are within its operating range. 

Inadequate protection against operating system bugs 
The operating system has bugs. Application programs can trigger some of them. If the 
application programmer knows, for example, that the system will crash if he sends data to 
the printer too soon after sending it to the disk drive, he should make sure that his program 
can't do that under any circumstances. 

Inadequate version control 
If the executable code is in more than one file, someone will try to use a new version of one 
file with an old version of another. Customers upgrading their software make this mistake 
frequently enough, then don't understand what's wrong unless the program tells them. The 
new version should include code that checks that all code files are up to date. 

Inadequate protection against malicious use 
People will deliberately feed a program bad input or try to trigger error conditions. Some 
will do it out of anger, others because they think it's fun. Saying that "no reasonable person 
would do this" provides no defense against the unreasonable person. 

ERROR DETECTION 
Programs often have ample information available to detect an error in the data or in their 
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operation. For the information to be useful, they have to read and act on it. A few commonly 
ignored symptoms or pieces of diagnostic information are described below. There are many 
others. 

Ignores overflow 
An overflow condition occurs when the result of a numerical calculation is too big for the 
program to handle. Overflows arise from adding and multiplying large numbers and from 
dividing by zero or by tiny fractions. Overflows are easy to detect, but the program does 
have to check for them, and some don't. 

Ignores impossible values 
The program should check its variables to make sure that they are within reasonable limits. It 
should catch and reject a date like February 31. If the program does one thing when a 
variable is 0, something else when it is 1, and expects that all other values are "impossible," 
it must make sure that the variable's value is 0 or 1. Old assumptions are unsafe after a few 
years of maintenance programming. 

Ignores implausible values 
Someone might withdraw $10,000,000 from their savings account but the program should 
probably ask a few different humans for confirmation before letting the transaction go 
through. 

Ignores error flag 
The program calls a subroutine, which fails. It reports its failure in a special variable called 
an error flag. The program can either check the flag or, as often happens, ignore it and treat 
the garbage data coming back from the routine as if it was a real result. 

Ignores hardware fault or error conditions 
The program should assume that devices it can connect to will fail. Many devices can send 
back messages (set bits) that warn that something is wrong. If one does, the program should 
stop trying to interact with it and should report the problem to a human or to a higher level 
control program. 

Data comparisons 
When you try to balance your checkbook, you have the number you think is your balance 
and the number the bank tells you is your balance. If they don't agree after you allow for 
service charges, recent checks, and so forth, there is an error in your records, the bank's, or 
both. Similar opportunities frequently arise to check two sets of data or two sets of 
calculations against each other. The program should take advantage of them. 

ERROR RECOVERY 
There is an error, the program has detected it, and is now trying to deal with it. Much error 
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recovery code is lightly tested, or not tested at all. Bugs in error recovery routines may be 
much more serious than the original problems. 

Automatic error correction 
Sometimes the program can not only detect an error but correct it, without having to bother 
anyone about it, by checking other data or a set of rules. This is desirable, but only if the 
"correction" is correct. 

Failure to report an error 
The program should report any detected internal error even if it can automatically correct the 
error's consequences. It might not detect the same error under slightly different 
circumstances. The program might report the error to the user, to the operator of a multi-user 
system, to an error log file on disk, or any combination of these, but it must be reported. 

Failure to set an error flag 
A subroutine is called and fails. It is supposed to set an error flag when it does fail. It returns 
control to the calling routine without setting the flag. The caller will treat the garbage data 
passed back as if they were valid. 

Where does the program go back to? 
A section of code fails. It logs the problem, sets an error flag, then what? Especially if the 
failing code can be reached from several GOTO statements, how does it know where in the 
program to return control to? 

Aborting errors 
You stop the program, or it stops itself when it detects an error. Does it close any open 
output files? Does it log the cause of the exit on its way down? In the most general terms, 
does it tidy up before dying or does it just die and maybe leave a big mess? 

Recovery from hardware problems 
The program should deal with hardware failures gracefully. If the disk or its directory is full, 
you should be able to put in a new one, not just lose all your data. If a device is unready for 
input for a long time, the program should assume that it's off line or disconnected. It 
shouldn't sit waiting forever. 

No escape from missing disk 
Suppose your program asks you to insert a disk that has files it needs. If the inserted disk is 
not the correct one, it will prompt you again until the correct disk is inserted. However, if the 
correct disk is not available, there is no way you can escape unless you reboot your system. 

BOUNDARY-RELATED ERRORS 
A boundary describes a change-point for a program. The program is supposed to work one 
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way for anything on one side of the boundary. It does something different for anything on 
the other side. 

The classic "things" on opposite sides of boundaries are data values. There are three standard 
boundary bugs: 

●     Mishandling of the boundary case: If a program adds any two numbers that are less 
than 100, and rejects any greater than 100, what does it do when you enter exactly 
100? What is it supposed to do? 

●     Wrong boundary: The specification says the program should add any two numbers 
less than 100 but it rejects anything greater than 95. 

●     Mishandling of cases outside the boundary: Values on one side of the boundary are 
impossible, unlikely, unacceptable, unwanted. No code was written for them. Does 
the program successfully reject values greater than 100 or does it crash when it gets 
one? 

We treat the concept of boundaries more broadly. Boundaries describe a way of thinking 
about a program and its behavior around its limits. There are many types of limits: largest, 
oldest, latest, longest, most recent, first time, etc. The same types of bugs can happen with 
any of them so why not think of them in the same terms? 

NUMERIC BOUNDARIES 
Some numeric boundaries are arbitrary (bigger or less than 100) while others represent 
natural limits. A triangle has exactly three sides (not more, not less). Its angles sum to 180 
degrees. A byte can store a (nonnegative) number between 0 and 255. If a character is a 
letter, its ASCII code is between 65 and 90 (capitals) or between 97 and 122 (lowercase). 

EQUALITY AS A BOUNDARY 
Every element in a list might be the same. Every element might be different. What happens 
if you try to sort either list? If the list is made of numbers, what happens if you try to 
compute their mean, standard deviation, coefficient of symmetry or kurtosis? (All four are 
summary statistics. The last two would either compute to 0 or cause a divide by 0 error 
depending on the calculation algorithm.) 

BOUNDARIES ON NUMEROSITY 
An input string can be up to 80 characters long? What if you type 79, 80 or 81? What does 
the program receiving your input do in each case? Can a list have one element? No 
elements? What is the standard deviation of a one-number list of numbers? (Answer: 
undefined or zero) 

BOUNDARIES IN SPACE 
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For example, if a graphing program draws a graph and a box around it, what to do with a dot 
that should properly be displayed outside the box? 

BOUNDARIES IN TIME 
Suppose the program displays a prompt, waits 60 seconds for you to respond, then displays a 
menu if you haven't typed anything. What happens if you start typing just as it's starting to 
display the menu? 

Suppose you have 30 seconds to answer a ringing telephone. After that, your phone stops 
ringing and the call forwards to the operator. Do you lose the call if you reach it at the 30th 
second? What if you reach it after the 30th second but before the operator has answered it? 

Suppose you press the Space Bar while the computer's still loading the program from the 
disk. What happens? Is <Space> sent to the operating system (which is loading the program), 
saved for the program being loaded, or is this just so unexpected that it crashes the 
computer? 

Race conditions reflect temporal boundaries.

BOUNDARIES IN LOOPS 
Here's an example of a loop: 

10  IF COUNT_VARIABLE is less than 45
     THEN   PRINT "This is a loop"
         SET COUNT_VARIABLE to COUNT_VARIABLE + 1
         GOTO 10
     ELSE quit

The program keeps printing and adding 1 to COUNT_VARIABLE until the counter finally 
reaches 45. Then the program quits. 45 bounds the loop. Loops can have lower as well as 
upper bounds (IF COUNT_VARIABLE is less than 45 and greater than 10). Beizer (1990) 
discusses tests of loop boundaries. 

BOUNDARIES IN MEMORY 
What are the largest and smallest amounts of memory that this program can cope with? (Yes, 
a few programs do crash if you give them access to too much memory.) Are data split across 
pages or segments of memory? Is the first or last byte of a segment lost or misread? (By the 
way, is that first byte numbered 0 or 1?) Are some of the data in RAM and some on disk, in 
virtual memory format? Suppose the program reads a value from RAM then a value from 
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virtual memory, then the next value from what used to be in RAM, then back to what used to 
be (still is? is again?) virtual memory, etc. How seriously will this back-and-forth affect 
performance? 

BOUNDARIES WITHIN DATA STRUCTURES 
Suppose the program keeps data in a record structure. Each record holds a person's name, 
followed by their employee number and salary. Then comes the next person's record (name, 
number, salary), etc. If it retrieves them from disk, does the program read the first record 
correctly? The last record? How does the program mark the end of a record or the beginning 
of the next? Does everything fit in this format? What if you have two employee numbers? 

HARDWARE-RELATED BOUNDARIES 
If a mainframe can handle up to 100 terminals, what happens when you plug in the 99th, 
100th, and 101st? What if you get 100 people to log on at the same time? 

What happens when the disk is full? If a directory can hold 128 files, what happens when 
you try to save the 127th, 128th, and 129th? If your printer has a large input buffer, what 
happens if your program fills it but has more data to send? What happens when the printer 
runs out of paper or the ribbon runs out? 

INVISIBLE BOUNDARIES 
Not all boundary conditions are visible from the outside. For example, a subroutine might 
approximate the value of a function, using one approximation formula when the function 
argument is less than 100 and a different approximation if the argument is 100 or greater. 
The first formula might be incalculable (e.g., divide by zero) when the function argument is 
100 and its values might make no sense when arguments are greater than 100. 100 is clearly 
a boundary but you might never realize it. 

CALCULATION ERRORS 
The program calculates a number and gets the wrong result. This can happen for one of three 
types of reasons: 

●     Bad logic: There can be a typing error, like A-A instead of A+A. Or the programmer 
might break a complex expression into a set of simpler ones, but get the 
simplification wrong. Or he might use an incorrect formula, or one inapplicable to the 
data at hand. This third case is a design error. The code does what the programmer 
intendedóit's his conception of what the code should do that is wrong. 

●     Bad arithmetic: There might be an error in the coding of a basic function, such as 
addition, multiplication, or exponentiation. The error might show up whenever the 
function is used (2 + 2 = -5) or it might be restricted to rare special cases. In either 
case, any program that uses the function can fail. 

●     Imprecise calculation: If the program uses floating point arithmetic, it loses precision 
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as it calculates, because of roundoff and truncation errors. After many intermediate 
errors, it may claim that 2 + 2 works out to -5 even though none of the steps in the 
program contains a logical error. 

This area is huge and this section only begins to scratch its surface. For an introduction to the 
larger area, read Conte and deBoor (1980) and Knuth (1981). For a second source on topics 
in Conte and deBoor, try Carnahan, Luther & Wilkes (1969). 

OUTDATED CONSTANTS 
Numbers are sometimes used directly in a program. The computer might be able to connect 
to a maximum of 64 terminals. The length of the configuration file might be 706 bytes. The 
first two digits in the year are 19 (as in 1987). When these values change, the program has to 
change too. Often, they are changed in a few places but not everywhere. Any calculations 
based on the old values are now out of date, and thus wrong. 

CALCULATION ERRORS 
Some errors are as simple as typing a minus sign instead of a plus, or subtracting B from A 
instead of A from B. These usually show up easily if you exercise reasonable care in testing. 
If the program asks for input data, then prints a number calculated from these, do the same 
calculation yourself. Does your number match the computer's? 

IMPOSSIBLE PARENTHESES 
(A + (B + C) * (D + (A / C - B E / (B + (F + 18 / (A - F)))))) 

Formulas with many parentheses are hard to understand. It's easy to get one wrong, when 
writing the code in the first place and when trying to change it later. 

WRONG ORDER OF OPERATORS 
The program will evaluate an expression in a certain order, but it might be a different order 
than the programmer expected. For example, if ** represents exponentiation, so 5 ** 3 is 5 
cubed, is 2 * 5 ** 3 equal to 1000 (10 cubed) or 250 (twice 5 cubed)? 

BAD UNDERLYING FUNCTION 
Commercially supplied programs and languages usually do the most basic functions, such as 
adding and multiplying, correctly. Of course, if your development group has written their 
own, these functions are as suspect as everything else. Slightly fancier functions, like 
exponentiation, sine, cosine, and hyperbolics, are not necessarily as trustworthy. Errors of 
this class may be deliberate. Some programmers use inaccurate approximation formulas 
because they evaluate quickly or are compact and easy to code. 

OVERFLOW AND UNDERFLOW 
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An overflow condition occurs when the result of a numerical calculation is too large for the 
program to handle. For example, suppose the program stores all numbers in fixed point 
format, with one byte per number. It works with numbers from 0 to 255. It can't add 255 + 
255 because the result is too large to fit in one byte. Overflows also occur in floating point 
arithmetic, when the exponent is too large. 

Underflows occur only in floating point calculations. In floating point, a number is 
represented by a pair of values, one for the exponent, the other for a fraction. For example, 
255 is 0.255 times 103. 255,000 is 0.255 times 106. The exponent changes, but the fractional 
part (0.255) is the same in both cases. Now, suppose the program allocates a byte for the 
exponent, and stores values of 0 to 255. What happens if the exponent is -1 (0.255 * 10-1 is 
0.0255)? This is too small to be stored (because the smallest exponent we can store in this 
scheme is 0), so we have an underflow. Underflows are usually converted to 0 (0.255 * 10-1 
becomes 0), without an error message. This is usually appropriate, but it can lead to 
computational errors: 

Is 100 * .255 * 10-1 zero or 2.55? 

TRUNCATION AND ROUNDOFF ERROR 
Suppose the program stores only two digits per number. The number 5.19 has three digits. If 
the program truncates (drops) the 9, it stores 5.1. Instead, it could round 5.19 upwards to 5.2, 
which is much closer than 5.1. 

If a programming language keeps two digits per floating point number, it works in two-digit 
precision. Calculations in this language would not be accurate. For example, 2.056 is about 
74. However, if you round 2.05 to 2.1, the calculated value of 2.056 is nearly 86. If you 
truncate 2.05 to 2.0, you get 64 instead. 

We don't know of any language that uses two-digit precision, but many keep only six digits 
in floating point calculations. Six-digit calculations are fine for simple computations but they 
can cause surprisingly large errors in more complicated calculations. 

CONFUSION ABOUT THE REPRESENTATION OF THE DATA 
The same number can be represented in many different ways; they can be confused with 
each other. For example, suppose that the program asks you for a number between 0 and 9. 
You type 1. It might store this 1 in a byte, as fixed point number between 0 and 255. There 
are 8 bits in this byte: the bit pattern is 0000 0001. Or it might store the ASCII code of the 
character you typed. The ASCII code for 1 is 49, or 0011 0001 in binary. In both cases, the 
number fits in one byte. It is easy to get confused later and treat something stored in ASCII 
format as if it were as a fixed point integer, or vice versa. Your number might also be stored 
in some other format, such as floating point. Again, confusion between formats is possible. 
Some programming languages straighten this out themselves, others issue warnings during 
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compilation, and others just let you get the wrong answer. 

INCORRECT CONVERSION FROM ONE DATA REPRESENTATION TO 
ANOTHER 
The program asks for a number between 0 and 9. You type 1. This is a character, and the 
program receives the ASCII code 49. To convert your input to a number, it should subtract 
48 from the code value. It subtracts 49 instead. You entered 1, but the program will treat 
your response as 0. Whenever a program does its own conversion from one data 
representation to another, it has plenty of opportunity to go wrong. ASCII to Integer is only 
one example of a conversion. Conversions are common between ASCII, floating point, 
integer, character (string), etc. 

WRONG FORMULA 
Some programs use complicated formulas. It's easy to miscopy one, to read the wrong one 
from the book, or to make an error when deriving one. 

INCORRECT APPROXIMATION 
Many formulas for approximating or estimating certain values were developed long before 
computers. They're great formulas in the sense that they don't require much computation, but 
lousy otherwise. Unfortunately, they are also traditional. They will keep appearing in text 
books and programs for years. As a common example, if you are graphing a set of data and 
want to fit a curve to them that has the form Y = a Xb, it is traditional to take logarithms of 
everything in sight, estimating a and b by fitting a line to the new function, log Y = log a + b 
log X. This is easy to program, quick to run, and inaccurate. When you return from 
logarithms and plot a Xb, the curve fits data on the left of the figure (small values of X) 
better than data toward the right. 

Many programs use bad approximation methods and other incorrect mathematical 
procedures. They might print impressive output, but it is wrong output. You can't test for 
these types of problems unless you understand a fair bit of the mathematics yourself. If you 
are testing a statistical package or other mathematical package, it is essential that you or 
another tester have a detailed understanding of the functions being programmed.   

INITIAL AND LATER STATES 
Before you can use a function, the program may have to initialize it. Typical initialization 
steps include identifying the function's variables, defining their types, allocating memory for 
them, and setting them to default values (such as 0). The program may have to read a disk 
file that contains defaults and other configuration information. What happens when the file is 
not there? Initialization steps might be done when the program is loaded (data defaults can 
be loaded into memory along with the program), when it is started, when the function is first 
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called, or each time the function is called. 

Initialization needs and strategy vary widely across languages. For example: 

●     In many languages, a function's local variables keep their values from one call to the 
next. If a variable is supposed to keep the same value, the function can set the 
variable's value once and leave it alone thereafter. The function usually has to reset 
other variables to their starting values. 

●     In other languages, local variables are erased from memory on exit from the function. 
Whenever the program calls a function, it must redefine its variables, allocate 
memory for them, and assign starting values. 

●     Some languages allow the programmer to specify whether a variable should stay in 
memory or be erased after each function call. 

●     Some compilers provide initialization support. The programmer can specify a starting 
value for a variable; the compiler will make sure that this loads into memory with the 
program. If the programmer doesn't assign an initial value, the compiler sets it to 0. 
Other compilers, even for the same language, do not provide this support. The 
function must set each variable's value the first time it's called. To avoid resetting 
each variable every time it's called, the function must know whether it's been called 
before. 

Initialization failures usually show up the first time the function is called or the second time, 
if it doesn't reinitialize variables correctly. Reinitialization failures may be path-dependent. If 
you reach a function in a "normal" way, it works fine. However, if you take an "abnormal" 
route, the program might branch into the function at some point after the initialization code. 
Programmers often treat backing up to modify data or redo calculations as abnormal. 

FAILURE TO SET A DATA ITEM TO 0 
Since so many compilers, in so many languages, set data to 0 unless you tell them otherwise, 
many programmers don't bother specifying the starting value of a variable unless it is non-
zero. Their coding style fails as soon as they use a compiler that doesn't automatically zero 
data. 

FAILURE TO INITIALIZE A LOOP-CONTROL VARIABLE 
A loop-control variable determines how many times the program will run through a loop. For 
example, a function prints the first 10 lines of a text file. The program stores the number of 
the line reaches 11, printing stops. Next time, the function must reset LINE to 1 or it will 
never start printing because LINE's value is 11 already. 

FAILURE TO INITIALIZE (OR REINITIALIZE) A POINTER 
A pointer variable stores an address, such as the location in memory where a given string 
starts. The value of the pointer can changeófor example, it might point to the first character 
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in a string, then be changed to point to the second, the third, and so on. If the programmer 
forgets to reset a pointer after changing it, it will point to the wrong part of the string or to 
the wrong string. If subsequent function calls keep changing the pointer without reinitializing 
it, the pointer may eventually point to code rather than data. 

You should suspect pointer errors if you see string fragments or incorrect array elements 
displayed. 

FAILURE TO CLEAR A STRING 
A string variable stores a set of characters. Whereas the value of a numeric variable might be 
5, a string might have the value Hello, my name is John. Strings can vary in length. You can 
change the string from Hello, my name is John to the shorter string, Goodbye. Some routines 
assume that a string is empty (filled with zeroes) before they use it. A routine that writes 
Goodbye into the first 7 bytes of a string without terminating it with zeroes might yield 
Goodbye my name is John rather than Goodbye. 

FAILURE TO INITIALIZE (OR REINITIALIZE) REGISTERS 
Registers are special memory areas usually found on the central processing unit itself. You 
can manipulate data stored in registers more quickly than those stored in normal memory. 
Because of this speed advantage, programs constantly use registers for temporary storage. 
They copy a few variables' values to registers, work with them, and copy the new values in 
the registers back. It's easy to forget to load the latest data into one of these registers. 

FAILURE TO CLEAR A FLAG 
Flags are variables that indicate special conditions. A flag can be set (true, on, up, usually 1) 
or clear (false, off, down, usually 0 or -1). The flag's value is normally clear. It is set as a 
signal that a routine has failed, that its variables have been initialized, that the result of a 
calculation was an overflow or an underflow, that you've just pressed a key, etc. Less 
desirably, but also common, a flag might tell a routine that it was called from one place in 
the program rather than another, or that it should perform one type of calculation rather than 
another. 

The flag must be kept current. For example, a routine should clear its error flag each time it's 
called, returning with a set flag only when it fails. A routine should clear its data-initialized 
flag whenever any of its variables change from default values that should be changed back 
the next time the routine is used. Some programs can set or clear the same flag in a dozen 
different places. It's hard to tell whether the flag's value is current or not. 

DATA WERE SUPPOSED TO BE INITIALIZED ELSEWHERE 
A function may not initialize all of its data. For example, variables shared by different 
functions might be initialized together. Suppose that some functions are listed in the same 
menu, and their shared variables are initialized whenever that menu is displayed. This works 
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as long as there's no other path to any of these functions, but can you reach one by a back 
door? Is any function an option on another menu? Might the program call it as part of 
another function's error recovery? 

FAILURE TO REINITIALIZE 
Programmers may forget to make sure that a function's variables have the right values the 
second time around. Simple forgetfulness is especially common when dealing with 
languages that automatically initialize variables to 0. The programmer didn't have to set it to 
0 for the first pass through the function. Why should she think about setting it back to 0 
later? 

The programmer might also fail to reinitialize a function's data when it's reached "by the 
back door," especially when you try to back up to change data. Imagine entering data on a 
form, displayed onscreen. The program initializes all relevant variables when it paints the 
form. You enter the wrong number, notice it after entering a few other values, move the 
cursor back, and fix it. Any calculations based on this number now have to be redone. Will 
the variables in those calculation sections be reinitialized? Moving backward in the program 
is risky as far as variable reinitialization is concerned. The risk is much higher if the 
programmer uses GOTOs to move back to lines in the middle of a block of code, rather than 
at the start of it. 

ASSUMPTION THAT DATA WERE NOT REINITIALIZED 
Some programs initialize the same variables repeatedly, before they could have changed. 
This is harmless, except for the waste of computer time. 

CONFUSION BETWEEN STATIC AND DYNAMIC STORAGE 
A local variable is called dynamic or automatic if it is erased from memory when the 
function that owns it exits. Each time the program calls the function, it has to redefine the 
variable, allocate memory for it, and assign starting values. A static variable stays in memory 
and keeps its value across function calls. In some languages, all local variables are dynamic, 
in others all locals are static, and in some, the programmer gets to choose which variables are 
static and which dynamic. When both types of variables exist, confusion is easy. The 
programmer might forget to reinitialize a static variable because she thinks it's dynamic, and 
so doesn't need initialization. Similarly, she might forget to update the value of an automatic 
variable because she forgets that it doesn't keep its value across function calls. 

DATA MODIFICATION BY SIDE-EFFECT 
After initialization, a routine might use a variable without changing it. The programmer 
might consider reinitialization unnecessary, since the variable doesn't change, but even if she 
intends the variable to be local to that routine, the language she's writing in might not 
recognize the concept of local variables. Any other part of the program can change this 
variable; after much maintenance, any other part of the program might. 
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INCORRECT INITIALIZATION 
The programmer might assign the wrong value to a variable, or declare it integer instead of 
floating point, static instead of dynamic, global instead of local. Most of these errors are 
caught by the compiler, long before you see the program. 

RELIANCE ON TOOLS THE CUSTOMER MAY NOT HAVE OR UNDERSTAND 
This is rare but it happensóit's surprisingly easy to miss. The programmer expects you to use 
some other program to modify this one or to set up some aspects of the program's 
environment. You must do this the first time you use the program, to get its memory limits or 
whatever into the right initial state. Thereafter, as the tester, you may forget that you ever did 
it.   

CONTROL FLOW ERRORS 
The control flow of a program describes what it will do next, under what circumstances. A 
control flow error occurs when the program does the wrong thing next. Extreme control flow 
errors stop the program or cause it to run amok. Many simple errors lead to spectacular 
misbehavior. 

PROGRAM RUNS AMOK 
The program displays garbage onscreen, saves garbage to disk, starts printing forever, or 
goes to some otherwise totally inappropriate routine. Eventually, it may stop dead. Whatever 
the exact behavior, the program's actions are out of your control. These are the most 
spectacular bugs, and are usually the easiest to find and fix. 

From the outside, these bugs can look the same. They all make the program go out of 
control. The descriptions below are examples of the causes of programs running amok. You 
would not test specifically for one of these errors unless you knew something about the 
programming language, the programmer's style, or the internal design. 

GOTO somewhere 
GOTO transfers control to another part of the program. The program jumps to the specified 
routine, but this is obviously the wrong place. The program may lock, the screen display may 
be inappropriate, etc. 

The GOTO command is unfashionable. The structured programming movement is centered 
on a belief that GOTO encourages sloppy thinking and coding (Yourdon, 1976). 

Errors involving GOTO are especially likely when: 

●     The program branches backward, going somewhere it's been before. For example, the 
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GOTO may jump to a point just past validity checking or initialization of data or 
devices. 

●     The GOTO is indirect, going to an address stored in a variable. When the variable's 
value changes, the GOTO takes the program somewhere else. It's hard to tell, when 
reading the code, whether the variable has the right value at the right time. 

Come-from logic errors A routine uses come-from logic if it changes what it does based on 
what routine called or jumped to it. Errors arise when the routine fails to correctly identify 
what called it or does the wrong thing after correctly identifying the caller. Calling routines 
often set flags or other variables to identify themselves, but a few different routines may use 
the same flag to mean different things, some may reset a flag when they're done with it while 
others don't, and some may give it values that the called routine doesn't expect. Come-from 
logic is fragile, and particularly prone to failure during maintenance programming. 

Problems in table-driven programs 
A table-driven program uses a table (array) of addresses. Depending on the value of some 
variable(s), the program selects a table entry and jumps to the memory address stored there. 
The table may be a data file read from disk that can be changed without recompiling the 
program. Table-driven programming can make code easier to maintain, but it has risks: 

●     The numbers in the table might be wrong, especially if they were entered by hand. 
These incorrect addresses could send the program anywhere. 

●     If the table is long, it is easy to supply the wrong entry for a given case, and easy to 
miss this when desk-checking the code. 

●     Suppose the table has five entries, and the program selects one of the five based on 
the value of a state variable. What if the variable can take on six values? Where does 
the program go in the sixth case? 

●     It's easy to forget to update a jump table when modifying the code. 

Executing data 
You can't tell from a byte's contents whether it holds a character, part of a number, part of a 
memory location, or a program instruction. The program keeps these different types of 
information in different places in memory to keep straight which byte holds what type of 
data. If the program interprets data as instructions, it will try to execute them and will 
probably lock. It may print odd things on the screen first. Some computers detect execution 
of "impossible" commands and stop the program with an error message (usually a 
hexadecimal message flagging program termination or reference to an illegal machine code.) 

The program will treat data as if they were instructions under two conditions: 

●     (a) Data are copied into a memory area reserved for code. The code is overwritten. 
Examples of how to do this: 
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❍     Pointers are variables which store memory addresses. A pointer might hold the 
starting address of an array; the programmer could put a value in the fourth 
element of the array by saying store it in the fourth location after the address 
stored in this pointer. If the address in the pointer is wrong, the data go to the 
wrong place. If the address is in the code space, the new data overwrite the 
program. 

❍     Some languages don't check array limits. Suppose you have an array 
MYARRAY, with three elements, MYARRAY[1], MYARRAY[2], and 
MYARRAY[3]. What happens if the program tries to store a value in 
MYARRAY[2044]? If the language doesn't catch this error, the data will be 
stored in the spot that would have been MYARRAY[2044] if that MYARRAY 
element existed. This memory location is a few thousand bytes past the end 
address of MYARRAY. It might be reserved for code, data, or hardware I/O, 
but not for MYARRAY. 

●     (b) The program jumps to an area of memory that is reserved for data, and treats it 
like an area containing code. 

❍     A bad table entry in a table-driven program can lead the program to jump into 
a data area. 

❍     Some computers divide memory into segments. The computer interprets 
anything in a code segment as instructions, and anything in a data segment as 
numbers or characters. If the program misstates a segment's starting address, 
what the computer interprets as a code segment will probably be a 
combination of code and data. 

Jumping to a routine that isn't resident 
To save room, computers may swap pieces of large programs in and out of memory. These 
pieces are called overlays: when one is in memory, the others aren't. When another is 
needed, the computer reads it from disk and stores it in the same area of memory used by the 
first overlay. When routines in the first overlay are again needed, they are again read into the 
shared area of memory. The routine in memory right now is resident in memory. 

Before using a routine that is part of an overlay, the program must check that the right 
overlay is resident. Otherwise, when it jumps to what should be the starting address of the 
routine, it may be jumping into the middle of some other routine. 

Overlays can also cause performance problems. The programmer might ensure that a routine 
is resident by always loading it from disk before jumping to it. This wastes a lot of computer 
time if he calls the routine many times. The program will also waste time if it alternates 
between routines that are part of two different overlays. This is called thrashing: the program 
loads the first overlay, executes the first routine, then overwrites it with the second overlay to 
execute the second routine, reloads the first overlay, etc. It spends most of its time loading 
overlays rather than getting work done. 
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Re-entrance 
A re-entrant program can be used concurrently by two or more processes. A re-entrant 
subroutine can call itself or be called by any other routine while it's executing. Some 
languages don't support re-entrant subroutine calls: if a routine tries to call itself, the program 
crashes. Even if the language allows re-entrance, a given program or routine might not be. If 
a routine is serving two processes, how does it keep its data separate, so that what it does for 
one process doesn't corrupt what it does for the other? 

Variables contain embedded command names Some language dialects ignore spaces. A 
phrase like PRINTMYNAME would be interpreted by the language as PRINT MYNAME. 
The program would attempt to print the value of variable MYNAME. This is an error if the 
user was trying to define a variable named PRINTMYNAME. This type of error is usually 
caught by the programmer, but occasional ones do survive. 

Wrong returning state assumed 
Imagine a subroutine that's supposed to set a device's baud rate. The program calls this 
routine and assumes that the routine did its job successfully. It starts transmitting through the 
device as soon as possible. This time, the routine failed. The transmission fails and the 
program hangs waiting for acknowledgment of the data. As another example, suppose a 
routine usually scales the data passed to it, passing back numbers that lie between 1 and 10. 
Under exceptional circumstances, the routine will scale from 0 to 10 instead. Because the 
calling program assumes that it will never receive a 0, it crashes on a divide by 0 error. 

Exception-handling based exits 
Suppose that a routine designed to calculate square roots sets an error flag but does no 
computations when asked to take the square root of a negative number. The idea behind error 
flags is that the calling program can decide how to deal with the problem. One might print an 
error message, another display a help screen, and a third might send the number to a slower 
routine built for complex numbers. Subroutines that flag and reject exceptional conditions 
can be used under more conditions. However, each time one is called, the caller must check 
that it did what the programmer expected it to do. If the exit-producing conditions are rare, 
he may miss them. During testing, they may show up as "irreproducible" bugs. 

Return to wrong place 
The key difference between a subroutine and a GOTO is that when the subroutine ends, it 
returns to the part of the program that called it, whereas GOTO never returns. Occasionally, 
a subroutine can return to the wrong place in a program. The next few sections are examples. 

Corrupted stack 
When a subroutine finishes, program control returns to the command following the call to 
the subroutine. The address of that command is stored in a data structure called a stack. The 
top of the stack holds the address most recently pushed onto it. The subroutine returns to the 
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address stored at the top of the stack. If the stack is only used to hold return addresses, it is 
called a Call/Return Stack. Most stacks are also used as a temporary spot to stash data. 

If a subroutine puts data on the stack and doesn't remove them before finishing, the computer 
will treat the number(s) at the top of the stack as a return address. The subroutine might 
"return" anywhere in memory. 

Stack under/overflow 
The stack might only be able to hold 16, 32, 64, or 128 addresses. Imagine a stack that can 
only hold 2 return addresses. When the program calls Subroutine 1, it stores a return address 
on the stack. When Subroutine 1 calls Subroutine 2, another return address goes on the stack. 
When Routine 2 ends, control goes back to Routine 1, and when Routine 1 ends, control 
returns to the main body of the program. 

What if Subroutine 2 calls Subroutine 3? The stack is storing 2 return addresses already, so it 
cannot also hold the return address for Subroutine 3. This is a stack overflow condition. 
Programs (or central processing chips) often compound a stack overflow problem by 
replacing the oldest stored return addresses with the new one. The program will now return 
to Subroutine 2 when Subroutine 3 is done. From Subroutine 2 it returns to Subroutine 1. 
From Subroutine 1 it returns to...???...there is no return address for Subroutine 1. This is a 
stack underflow. 

GOTO rather than RETURN from a subroutine 
Subroutine 1 calls routine 2. Routine 2 GOTOs back to 1, rather than returning normally. 
The return address from routine 2 to 1 is still on the stack. When subroutine 1 finishes, the 
program will return to the address stored on the stack, which takes it back to subroutine 1. 
This is rarely intentional. 

To avoid this error, subroutine 2 might POP (remove) its return address from the stack when 
it does its GOTO back to routine 1. Used incorrectly, this can cause stack underflows, 
returns to the wrong calling routine, and attempts to return to data values stored on the stack 
with the return addresses. 

Interrupts 
An interrupt is a special signal that causes the computer to stop the program in progress and 
branch to an interrupt handling routine. Later, the program restarts from where it was 
interrupted. Input/output events, including signals from the clock that a specified interval of 
time has passed, are typical causes of interrupts. 

Wrong interrupt vector 
When an interrupt signal is generated, the computer has to find the interrupt handling 
routine, then branch to it. The address of the interrupt handler is stored in a dedicated 
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location in memory. The computer jumps to the address stored in that location. If the 
computer can distinguish between several different types of interrupts, it finds a given 
interrupt's handler in a list of addresses stored in a dedicated section of memory. This list is 
called the interrupt vector. 

If wrong addresses are stored in the interrupt vector, any error might be possible in response 
to an interrupt-generating event. If the addresses are merely out of order, the program is less 
likely to run amok but it might try to echo characters onscreen in response to a clock signal, 
or treat keyboard inputs as if they flagged time-outs. 

Failure to restore or update interrupt vector 
A program can change the interrupt vector by writing new addresses into the appropriate 
memory locations. If a module temporarily changes the interrupt vector, it might not restore 
the old address list on exit. Another might fail to make a permanent (or temporary) change to 
the vector. In either case, the computer will branch to the wrong place after the next 
interrupt. 

Failure to block or unblock interrupts 
Programs can block most interrupts, instructing the computer to ignore blockable interrupts. 
For example, it's traditional to block interrupts just before starting to write data to a disk and 
to unblock immediately after output to the disk is complete. This prevents many data 
transmission errors. 

Invalid restart after an interrupt 
The program is interrupted, then restarted. In some systems, at restart time, the program gets 
a message or other indication that it was interrupted. The message usually identifies the type 
of interrupting event (keyboard I/O, time-out, modem I/O, etc.). This is useful. For example, 
if a program knows it was interrupted, it can repaint the screen with information it was 
showing before the interrupt. The programmer might easily specify the wrong action or a 
branch to the wrong location in response to a signal that a certain type of interrupt has been 
executed. Programmers are as unlikely to catch these errors as error-handling errors. 

PROGRAM STOPS 
Some languages will stop a program when certain types of errors are detected. Some 
programs aren't designed to stop, nor are the languages designed to stop them, but they do 
anyway. 

Not all halts are control flow errors. If the program code says "If this happens, halt," the 
program is supposed to stop. It is a user interface error, but not a control flow error, if this 
program stops unexpectedly, without a message. 

Dead crash 
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In a dead crash, the computer stops responding to keyboard input, stops printing, and leaves 
lights on or off (but doesn't change them). It usually locks without issuing any warnings that 
it's about to crash. The only way to regain control is to turn off the machine or press the reset 
key. 

Dead crashes are usually due to infinite loops. One common loop keeps looking for 
acknowledgment or data from another device (printer, another computer, disk, etc.). If the 
program missed the acknowledgment, or never gets one, it may stay in this wait loop forever. 

Syntax errors reported at run-time 
An interpreted language may not check syntax until run-time. When the language finds a 
command that it can't interpret, it prints an error message and stops the program. Any line of 
code that the programmer didn't test may have a syntax error. 

Waits for impossible condition, or combination of conditions 
The program stops (usually a dead crash) waiting for an event that cannot occur. Common 
examples: 

●     I/O failure: The computer sends data to a broken output device, then waits forever for 
the device to acknowledge receipt. A similar problem arises between processes in a 
multi-processing system. One process sends a request or data to another, then waits 
forever for a response that never arrives. 

●     Deadly embrace: This is a classic multi-processing problem. Two programs run 
simultaneously. Each needs the same two resources (say, a printer and extra memory 
for a printer buffer). Each grabs one resource, then waits forever for the other 
program to finish with the other resource. 

●     Simple logic errors: For example, a program is supposed to wait for a number 
between 1 and 5, discarding all other input. However, the code testing the input reads: 
IF INPUT > 5 AND INPUT < 1. No number can meet this condition so the program 
waits forever. 

Similarly, in multi-processing systems, one process may wait forever for another to send it 
an impossible value. 

Wrong user or process priority 
A computer that runs many programs at once switches between them. It runs one program 
for a while, then switches to a second, to a third, eventually returning to the first. Multi-
processing systems run smoothly because a scheduling program switches back to programs 
when events like keyboard input happen or when a program has been suspended for too long. 

If two programs have been waiting equally long to run, or if the same type of event happens 
to trigger each, the scheduler must decide which program to run first. It uses a priority 
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system: priorities might be assigned to users or programs. The program being run by a higher 
priority user will run first. 

Some programs run at such low priorities, they may be suspended for hours before being 
restarted. This may be appropriate. In other cases, priorities were incorrectly assigned or 
interpreted. Less extreme priority errors are more common but harder to detect unless they 
trigger race conditions. 

LOOPS 
There are many ways to code a loop, but they all have some things in common. Here's one 
example: 

1 SET LOOP_CONTROL = 1
2 REPEAT
3               SET VAR = 5
4               PRINT VAR * LOOP_CONTROL
5               SET LOOP_CONTROL = LOOP_CONTROL + 1
6 UNTIL LOOP_CONTROL > 5
7 PRINT VAR

The program sets LOOP_CONTROL to 1, sets VAR to 5, prints the product of VAR and 
LOOP_CONTROL, adds 1 to LOOP_CONTROL then checks whether LOOP_CONTROL 
is greater than 5. Since LOOP_CONTROL is only 2, it repeats the code inside the loop (lines 
3, 4, and 5). The loop keeps repeating until LOOP_CONTROL reaches 6. Then the program 
executes the next command after the loop, printing the value of VAR. 

LOOP_CONTROL is called the loop control variable. Its value determines how many times 
the loop is executed. If the expression written after the UNTIL is complex, involving many 
different variables, it is a loop control expression, rather than a loop control variable. The 
same types of errors arise in both cases. 

Infinite loop 
If the condition that terminates the loop is never met, the program will loop forever. Modify 
the example so that it loops until LOOP_CONTROL was less than 0 (never happens). It will 
loop forever. 

Wrong starting value for the loop control variable 
Suppose that, later in the program, there is a GOTO to the start of the loop at line 2. 
LOOP_CONTROL could have any value. It probably isn't 1. If the programmer expects this 
loop to repeat five times (as it would if the GOTO was to line 1), he is in for a surprise. 

Accidental change of the loop control variable 
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In the example, the value of LOOP_CONTROL changed inside the loop. A bigger loop 
might change LOOP_CONTROL in more than one place (especially if it calls a subroutine 
that uses LOOP_CONTROL), and the program might repeat the loop more or less often than 
the programmer expects. 

Wrong criterion for ending the loop 
Perhaps the loop should end when LOOP_CONTROL > 5 rather than when 
LOOP_CONTROL >_ 5. This is a common mistake. And, if the ending criterion is more 
complex, it is more prone to error. 

Commands that do or don't belong inside the loop 
In the example, SET VAR = 5 is inside the loop. The value of VAR doesn't change inside the 
loop, so VAR is still 5 the second, third, fourth, and fifth times the loop executes. Resetting 
VAR to 5 each time is wasteful. Some loops repeat thousands of times: unnecessary 
repetition within them is significant. 

Alternatively, suppose VAR did change inside the loop. If the programmer wants VAR to 
start at 5 each time the loop repeats, he has to say SET VAR = 5 at the head of the loop. 

Improper loop nesting 
One loop can be nested (completely included) inside another. It is not possible (without 
error) for one loop to start inside another but to end outside of it. 

IF, THEN, ELSE, OR MAYBE NOT 
An IF statement has the form: 

    IF This_Condition IS TRUE
         THEN DO Something
         ELSE DO Something_Else

For example: 

    IF VAR > 5
         THEN SET VAR_2 = 20
         ELSE SET VAR_2 = 10

The THEN clause (SET VAR_2 = 20) is only executed if the condition (VAR > 5) is met. If 
the condition is not met, the ELSE clause (SET VAR_2 = 10) is executed. Some IF 
statements only specify what to do if the condition is met. They don't include an ELSE 
clause. If the condition is not met (VAR =< 5) the program skips the THEN clause and 
moves on to the next line of code. 
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Wrong inequalities (e.g., > instead of >_) 
The tested condition (VAR > 5) might be incorrect, or incorrectly stated. Programmers often 
forget to consider the case in which the two variables are equal. 

Comparison sometimes yields wrong result 
The condition tested by the IF is usually the right one, but not always. Suppose the 
programmer wants to test whether three variables are the same. He might write IF (VAR + 
VAR_2 + VAR_3) / 3 = VAR. 

If VAR, VAR_2, and VAR_3 are the same, the average of them will have the same value as 
any one of them. Further, for almost all values, if VAR, VAR_2, and VAR_3 are not the 
same, their average will not equal VAR. But suppose that VAR is 2, VAR_2 is 1, and 
VAR_3 is 3. (VAR+VAR_2+ VAR_3) / 3 = VAR, but VAR, VAR_2, and VAR_3 aren't 
equal. Shortcuts like this that try to combine a few comparisons into one regularly go awry. 

Not equal versus equal when there are three cases 
The three-case problem often comes up during maintenance programming. The initial code 
may have restricted VAR's values to 0 and 1, but later changes allow it to be 2 as well. In the 
original program, an IF statement for VAR = 0 was fine. The THEN clause covered VAR = 
0, and, since VAR could only be 0 or 1, the ELSE clause said what to do when VAR = 1. 
Now that VAR can also be 2, the ELSE clause is probably wrong. 

It's risky to compare a variable to only one value (like VAR = 0), leaving all the others to the 
same ELSE clause. There are so many other possible values: some may arise as originally 
unanticipated special cases. 

Testing floating point values for equality 
Floating point calculations are subject to truncation and round off errors. For example, rather 
than being exactly zero, a variable's value might be 0.000000008 because of small 
computational errors. This is close, but it wouldn't pass a test of equality (IF VAR = 0). 

Confusing inclusive and exclusive OR 
Many IF statements test whether one of a group of conditions is true (IF A OR B is true, 
THEN ...) Unfortunately, "or" is ambiguous: 

●     inclusive or: satisfied if A is true, B is true or both A and B are true 
●     exclusive or: satisfied if A is true or B is true, but not if A and B are both true 

Incorrectly negating a logical expression 
IF statements sometimes take the form, IF A is NOT true, THEN. Programmers often carry 
out the negation incorrectly or don't think through what the negation means. For example, IF 
NOT (A or B) THEN ... means IF A is false AND B is false, THEN.... The THEN clause 
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will not be taken if A or B is true, even if the other is false. 

Assignment-equal instead of test-equal 
In the C language, if (VAR = 5) means SET VAR = 5, then test whether it's nonzero. 
Programmers often write this instead of if (VAR == 5), which means what some people 
think if (VAR = 5) should mean. 

Commands belong inside the THEN or ELSE clause 
Here's a simple example of this type of error: 

        IF 
        VAR = VAR_2
                        THEN SET VAR_2 = 10
                        SET VAR_2 = 20

Clearly, SET VAR_2 = 20 belongs inside an ELSE clause. As it is now, VAR_2 is always 
set to 20. Setting VAR_2 to 10 first, when VAR = VAR_2, has no effect. 

Commands that don't belong inside either clause 
Sometimes the programmer will include a command inside a THEN or an ELSE clause that 
should always be executed (i.e., in both cases). If he repeats the command inside both 
clauses, he wastes code space, but this usually doesn't matter. If he includes it only inside 
one clause, it will be missed whenever the other clause (ELSE or THEN) is executed. 

Failure to test a flag 
For example, the program calls a subroutine, which is supposed to assign a value to a 
variable. The subroutine fails, sets its error flag, and leaves the variable alone. The program 
doesn't check the error flag. Instead, it does its usual IF test on the variable. Whatever code 
the program executes from here is wrong, or is right only by luck. The value stored in the 
variable is junk. That's what the subroutine means when it sets the flag. 

Failure to clear a flag 
A subroutine set its error flag the last time it was called. The flag is still set. This time the 
subroutine does its task and leaves the error flag alone. The error flag is still set. The 
program will believe this error flag, ignore the subroutine's output, and do error recovery 
instead. 

MULTIPLE CASES 
An IF statement considers only two cases: an expression is either true or false. Commands 
like CASE, SWITCH, SELECT, and computed GOTO are used when a variable might have 
many different values and the programmer wants to do one of many different things 
depending on the value. 
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The typical command of this type is equivalent to this: 

IF VAR is 1 do TASK-1
IF VAR is 2 do TASK-2
IF VAR is 3 do TASK-3
IF VAR is anything else, do DEFAULT-TASK 

If there is no default case, the program falls through to the commands following this multiple-
choice block. 

Missing default 
A programmer who thinks VAR can only take on the values listed may not write a default 
case. Because of a bug or later modifications to the code, VAR can take on other values. A 
default case could catch these, and print any unexpected value of VAR. 

Wrong default 
Suppose the programmer expects VAR to have only four possible values. He explicitly deals 
with the first three possibilities, and buries the other one as the "default." Will this default be 
correct for VAR's unanticipated fifth and sixth values? 

Missing cases 
VAR can take on five possible values but the programmer forgot to write a CASE statement 
covering the fifth case. 

Case should be subdivided 
Some cases cover too much: perhaps one case covers all values of VAR below 30, but the 
program should do one thing if VAR is below 15 and something else for larger values. The 
most common example of this problem is the default case. The programmer doesn't think it 
matters what happens if VAR has certain values, so he covers them all with the default. 

Overlapping cases 
The CASE statements are equivalent to this: 

IF VAR > 5 then do TASK_1
IF VAR > 7 then do TASK_2
etc. 

The first and second cases overlap. If VAR is 9, it fits in both cases. Which should be 
executed? The first task is the usual choice. Sometimes both are. Sometimes the second one 
is the correct choice. 
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Invalid or impossible cases 
The program executes TASK_16 only if VAR < 6 AND VAR > 18. TASK_16 can never run 
because VAR can't meet this condition. Similarly, the program might specify a value that 
VAR can't reach in practice, even though it's not an impossible number. You won't see this 
type of problem unless you look at the code, but it wastes code space and may reflect fuzzy 
thinking.   

ERRORS IN HANDLING OR INTERPRETING DATA 

Data are passed from one part of a program to another, and from one program to another. In 
the process, the data might be misinterpreted or corrupted. 

PROBLEMS WHEN PASSING DATA BETWEEN ROUTINES 
The program calls a subroutine and passes it data, perhaps like so: 

DO SUB(VAR_1, VAR_2, VAR_3) 

The three variables, VAR_1, VAR_2, and VAR_3 are passed from the program to the 
subroutine. They are called the subroutine's parameters. The subroutine itself might refer to 
these variables by different names. The statement at the start of the subroutine definition 
might look like this: 

SUB(INPUT_1, INPUT_2, INPUT_3) 

The subroutine receives the first variable in the list passed by the program (VAR_1) and 
calls it INPUT_1. It calls the second variable in the list (VAR_2) INPUT_2. INPUT_3 is its 
name for the last variable (VAR_3). 

The program's and subroutine's definitions of these variables must match. If VAR_1 is an 
integer, INPUT_1 should be as well. If VAR_2 is a floating point value for someone's 
temperature, that's what the subroutine had better expect to find in INPUT_2. 

Parameter list variables out of order or missing 
If the program says DO SUB(VAR_2, VAR_1, VAR_3), the subroutine will associate 
INPUT_1 with VAR_2, and INPUT_2 with VAR_1. Programmers routinely type the 
variable names in the wrong order in these lists. 

Missing parameters are less common in many, but not all, languages because their compilers 
catch this problem. 
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Data type errors 
Suppose the program defines VAR_1 and VAR_2 as two-byte integers but the subroutine 
defines INPUT_1 and INPUT_2 as one-byte integers. What happens is language dependent, 
but it would be no surprise if INPUT_1 got the first byte of VAR_1 and INPUT_2 got the 
second byte. 

The data type specifies how the data are stored. Integers, floating points, and character 
strings are simple examples. Arrays, records (like a record in a database, with fieldsósee 
Chapter 12) and arrays of records are common examples of slightly more complex data 
structures. There are also stacks, trees, linked lists, and others. (See Elson, 1975, for 
descriptions of these.) 

Sometimes a mismatch between the structure of data in the calling and called routines is 
deliberate. The calling program might pass a three-dimensional array which the subroutine 
treats as a bigger one-dimensional array. The calling routine might pass an array of 
characters to a subroutine that treats them as an array of numbers. Some languages ban this, 
but it is standard form in others. As you can imagine, it can lead to a big mess, especially 
when the variable(s) being reinterpreted are part of a larger list. If the calling and called 
routines differ in the amount of memory they expect these mismatched variables to use, 
anything that comes after these in the parameter list might be misread. 

Aliases and shifting interpretations of the same area of memory 
If two different names refer to the same area of memory at the same time, they are aliases. If 
VAR_1 and FOO are aliases for each other, then if the program says SET FOO = 20, VAR_1 
becomes 20. Some aliases are trickier. Suppose VAR_1 and VAR_2 are both one-byte 
integers and FOOVAR is a two-byte integer whose first (high order) byte just happens to be 
VAR_1 and whose second byte is VAR_2. In this case, SET FOOVAR = 20 sets VAR_2 to 
20 and VAR_1 to 0. 

It is easy to forget an alias. Expect maintenance programmers to miss it. In either case, the 
programmer will freely change one variable without realizing the effect on the "other." This 
can cause all sorts of unexpected results, even more so when the aliasing is more complex 
than two variables with the same name. 

Misunderstood data values 
The program passes temperature in centigrade to a subroutine which interprets the value as 
fahrenheit. The subroutine puts a 1 into an error flag to indicate that the flag is clear. It uses -
1 to indicate a set flag. The program expects 0 for a clear flag and any other value if the flag 
is set. 

Inadequate error information 
The subroutine fails to set an error flag (maybe there is no error flag). Or it does signal an 
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error but doesn't say enough else for the calling program to decide how to handle it. 

Failure to clean up data on exception-handling exit 
The subroutine detects an error or a special case and exits quickly. Before it detected the 
problem, it changed the values of variables passed to it. If possible, it should reset these to 
their original values before returning to the calling program. 

Outdated copies of data 
Two processes may keep their own copies of the same data. Two routines within the same 
process might do the same. When the data change, both (all) copies have to be updated. It's 
common to find one process or routine working with an outdated copy of the data, because 
another changed the data without indicating that it did so. 

Related variables get out of synch 
One variable is usually a multiple of another, but one was changed and the other was not 
updated. In contrast to the outdated copy problem just described, which is more likely a 
problem between processes, this one is common within the same routine. 

Local setting of global data 
Global variables are defined in the main program. Any subroutine can use them óread their 
values or change them. Subroutines' changes of a global variable are often accidental. The 
programmer thought that a second variable, local to the subroutine, had this name and that 
the change would be to that local variable. 

Global use of local variables 
A variable is local to a subroutine if only that subroutine can use it. Most languages 
distinguish between global and local variables, but not all. In many BASICs, for example, all 
variables are global. In these, variables are kept local only by usage: they appear only in one 
subroutine. Especially if the variables are not carefully named, the programmer might 
unintentionally refer to a local variable in other places in the program. 

Wrong mask in bit field 
To save a few bytes and microseconds, some processes pass data in bit fields. Each byte 
might hold eight variables, with one bit assigned to each. Or, the processes might use the 
first two bits for one variable, the next three for a second, leaving one bit each for third, 
fourth, and fifth variables. A mask is a bit pattern that allows the programmer to focus only 
on the bits of interest. It has 0's in the other bit positions. The program refers to these to zero 
out the irrelevant bits in the bit field. If the mask has the wrong bits set, the program looks at 
the wrong "variable." 

Wrong value from a table 
Data are often organized in tables (arrays or records). Pointer variables indicate where in the 
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table a value should be stored or retrieved. The program might look in the wrong place (bad 
pointer) or it might look in the right place but find an incorrect value. 

DATA BOUNDARIES 
The program may use the wrong starting or ending address of a set of data. 

Unterminated null terminated strings 
STRING_VAR is a string variable. It can hold the string Hello or the string I am a string 
variable or a much longer string. The number of characters stored by a string variable isn't 
fixed, so there must be a way to indicate the end of the string. One approach puts a null 
character (all bits zero) after the last character. This is called the string terminator. In 
languages which use null terminators, all string handling routines look for the null. 
Occasionally, the null character is forgotten, overwritten, or just not copied with the rest of 
the string. A routine that works with this unterminated string, perhaps copying or printing it, 
will include the string and everything past what should be the string's end until it reaches a 
null or the end of the computer's memory. In copying the string to another variable, the 
routine might fill the new variable's data space plus hundreds of bytes past it, overwriting 
other variables or code. 

Early end of string 
STRING_VAR is supposed to hold I am a string variable but a routine that operates on 
STRING_VAR (perhaps copying or printing it), behaves as if it held I am a str. Perhaps a 
null character was copied into the middle of the string. If string length is kept in a separate 
byte (the length byte), perhaps this value was miscalculated or overwritten. 

Read/write past end of a data structure, or an element in it 
An array is a good enough example of a data structure for this description. The program 
might miscalculate the length of each element and so err when it tries to read the value of a 
specific element. In doing so, it might read a memory location well past the end of the array. 
The routine will probably also overshoot the end of the array if it expects the array to have 
more elements than it does. This kind of error usually happens when one routine sends the 
array to another, and their definitions of the data stored in it don't match. 

READ OUTSIDE THE LIMITS OF A MESSAGE BUFFER 
A buffer is an area of memory used for temporary storage. Messages between processes 
often include buffers: the message includes a pointer to the start of the buffer and, in effect, 
says "for more details, read this. " When the process receiving the message is done with it, it 
"releases" the buffer which becomes "free memory" again, ready for other uses as needed by 
the operating system. 

The receiving routine might get the address or the length of the message buffer wrong. It 
could start reading memory locations that precede the start of the buffer or it could keep 
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reading data out of locations past the buffer's end. 

Compiler padding to word boundaries 
Depending on the computer, a word might be 12 bits, 1, 2, 3, or 4 bytes long, or some other 
length. A word is a computer's most natural unit of storage. Some compilers "pad" all one-
byte variables to make them a word long. For example, a variable whose value was 255 now 
has the value 00255: the leading zeros are padding. The variable takes more space but keeps 
the same value. Such a compiler might pad individual variables, individual elements of 
arrays, or the full array itself, to ensure that variables (or the array) have their first byte at the 
start of a word. Another compiler for the same language might not do this type of padding. 
Some routines calculate how many bytes a piece of data should be from the start of a data 
structure (perhaps the start of a message buffer). Such routines will fail when the 
programmer switches from a compiler that uses one set of padding rules to another compiler 
whose rules are different. 

Value stack under/overflow 
Earlier in the Appendix ("Control flow errors") we described stack problems as they relate to 
subroutine calls. The programmer might also store data on the stack. A stack that holds data 
only, noóreturn addressesóis a value stack. 

Suppose a stack can hold 256 bytes and the programmer tries to store 300 bytes on it. The 
stack overflows: the last 256 bytes stored are usually kept, and the first 44 values lost, 
overwritten by the others. When the program tries to retrieve these data from the stack, it can 
only get the last 256. When it tries to pop the 257th value off the stack (the 44th pushed onto 
the stack) there is an underflow conditionóthe program is trying to retrieve a value from a 
stack that is now empty. 

Trampling another process' code or data 
This is especially common when processes share areas of memory, rather than passing data 
back and forth using messages. One process loses a null terminator from a string or 
miscalculates the length of a data structure or just runs amok. It writes junk into areas of 
memory that it shares with another process, or it writes into areas it can reach even though 
they should be private to that other process. 

MESSAGING PROBLEMS 
The safest way for two processes to communicate is via messages. If they pass data through 
shared memory areas instead, a bug in one process can trash data used by both, no matter 
how defensively the other process was written. The most prevalent problems arising out of 
messaging architectures are race conditions, which are discussed in the next section. There 
are also errors in sending and receiving the data in a message. 

Messages sent to wrong process or port 
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A message can go to the wrong place. Even if it goes to the right process, that process may 
expect messages from this one to arrive only at certain ports (think of ports as virtual 
receiving areas). Even a message that goes to the right process and port may carry an invalid 
ID (such as the name of the communication protocol in use between the processes). In any of 
these cases, the message will be rejected. 

Failure to validate an incoming message 
A process must check messages that it receives to make sure that they are intended for it, that 
they contain the right identifiers, etc. The process that sent this message may have sent it to 
the wrong place or it may be running amok. It is up to the receiving process to ensure that it 
accepts and acts on no garbage. 

Lost or out of synch messages 
One process may send many messages to another, in a predictable order. Sometimes, 
however, a process will send MESSAGE_2 before MESSAGE_1. It might send a request to 
write something to a disk file before sending a message that names the file and requests that 
it be opened. Messages can get out of order for hundreds of reasons; not all of them are bugs. 
The receiving program should be able to cope with this, perhaps by saving MESSAGE_2 
until it gets MESSAGE_1, or by telling the other process that it discarded MESSAGE_2 
because it came out of order. 

Mismatching state information is a common symptom of a failure to cope with badly ordered 
messages. In the state table of one process, the disk file is open, the printer is initialized, the 
phone is offhook, etc. According to the other process, the disk file has not been opened, the 
printer is not ready, and the phone is on hook. It doesn't matter which process is right. The 
mismatch causes all sorts of confusion. 

Message sent to only N of N+1 processes 
Suppose that many (N+1) processes keep private copies of the same data, and update their 
local databases when they get a message instructing them to do so. Or suppose that many 
people are at their terminals, a separate control and communications process is assigned to 
each terminal, and an urgent message is sent out, to be printed on each screen, saying that the 
system will go down in three minutes. Sometimes, one of the processes doesn't get the 
message. This is usually the most recently activated process or the one most recently coded. 

DATA STORAGE CORRUPTION 
The data are stored on disk, tape, punch cards, whatever. The process corrupts stored data by 
putting bad values into these files. 

Overwritten changes 
Imagine two processes working with the same data. Both read the data from disk at about the 
same time. One saves some changes. The second doesn't know anything about changes made 
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by the first. When it saves its changes, it overwrites the data saved by the first process. Some 
programs use field, record, or file locking to prevent processes from changing fields, records, 
or files that another process is changing. These locks are not always present, and they don't 
always work. 

Data entry not saved 
The program asks for data, which you enter. For some reason, maybe because the file is 
locked, it doesn't succeed in storing your entries on disk. 

Too much data for receiving process to handle 
The receiving process might not be able to cope with messages beyond a certain length, or 
with more than so many messages per minute. It might discard the excess, crash, or print 
error messages. What it won't do is process the excess messages successfully. 

Overwriting a file after an error exit or user abort 
You enter data but try to stop the program before it saves them. It saves the new (bad) data 
first, then stops.   

RACE CONDITIONS 
In the classic race, there are two possible events, call them EVENT_A and EVENT_B. Both 
events will happen. The issue is which comes first. EVENT_A almost always precedes 
EVENT_B. There are logical grounds for expecting EVENT_A to precede EVENT_B. 
However, under rare and restricted conditions, EVENT_B can "win the race," and occur just 
before EVENT_A. We have a race condition whenever EVENT_B precedes EVENT_A. We 
have a race condition bug if the program fails when this happens. Usually the program fails 
because the programmer didn't anticipate the possibility of EVENT_B preceding EVENT_A, 
so he didn't write any code to deal with it. 

Few testers look for race conditions. If they find an "irreproducible" bug, few think about 
timing issues (races) when trying to reproduce it. Many people find timing issues hard to 
conceptualize or hard to understand. We provide more than our usual amount of detail in the 
examples below, hoping that this will make the overall concept easier to understand. 

RACES IN UPDATING DATA 
Imagine that one routine reads a credit card balance from the disk, adds the amount of the 
card holder's latest purchase, and writes the new balance back to the disk. A second routine 
reads the same balance, subtracts the latest payment, and saves the result to disk. A third 
routine adds foreign currency transactions. Each of these routines can run concurrently. Each 
runs quickly, and there are many different card holders, so the following scenario is most 
unlikely: 
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A credit card has a balance of $1000. The card holder has just made a purchase for $100 and 
a payment of $500. The correct balance is thus $600. However, the first routine reads the 
$1000 balance from the disk. While it adds the $100 purchase, the second routine reads the 
same card holder's balance (still $1000). Then the first routine stores the new balance 
($1100) to disk. The second routine subtracts the $500 payment amount from the $1000 
balance that it read from the disk. It saves the new balance ($500) to disk. The $100 addition 
made by the first routine has been completely lost because the second routine read the 
balance before the first routine had finished updating it. 

This is a race condition: it should almost never happen that the second routine will read the 
balance after the first routine has started changing it but before the first routine finishes. 
However, it can happen and occasionally it will. 

ASSUMPTION THAT ONE EVENT OR TASK HAS FINISHED BEFORE 
ANOTHER BEGINS 
The previous and the next sections provide examples of this type of problem. 

ASSUMPTION THAT INPUT WON'T OCCUR DURING A BRIEF PROCESSING 
INTERVAL 
You type a character. The editing program you're testing receives it, moves other displayed 
characters around on the screen so it can display this one at the cursor location, echoes the 
received character, then looks for your next input. Naturally, since the computer is faster 
than the finger, the program should get everything done and be ready for the next input long 
before you're ready to type it. Accordingly, the program doesn't allow for the possibility that 
other characters will arrive before it's done with this one. However, a fast typist might enter 
two, three, or more characters before the editor is ready for them. The editor catches the last 
one typed and misses the others, which were typed while it was in the middle of dealing with 
the first one. 

ASSUMPTION THAT INTERRUPTS WON'T OCCUR DURING A BRIEF 
INTERVAL 
The program is doing time-critical operations, such as: 

●     writing bits to the right place on a spinning disk or a moving cassette tape 
●     getting a pen to draw at the right place on a moving sheet of paper 
●     responding to a message or acknowledging input within a short time period 

The programmer realizes that these operations take very little time. Since it's so unlikely for 
an interrupt-triggering event to happen in this brief interval, why take the time to block 
interrupts during it? Usually all goes well, but every now and again the program will be 
interrupted. 
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Failure to block interrupts was raised earlier ("Program runs amok: Interrupts"). There the 
focus was on the problems of interrupts. Here the point is one of timing. Even if part of a 
program is brief, if it lasts long enough that an interrupt-triggering event can happen during 
this interval, then some day an interrupt-triggering event will happen during the interval. 

RESOURCE RACES: THE RESOURCE HAS JUST BECOME UNAVAILABLE 
Two processes both need the same printer. The one that takes control of the printer first gets 
it. The other has to wait. Even though there's a "race" here, this is not a race condition in 
concurrent systems. Programs are, or should be, written to expect the printer (or other 
sharable resources) to be temporarily unavailable. 

Suppose, though, that one process checks whether a printer is available. If the printer is busy, 
the program does something else. If the printer is available, the program starts to use it. Since 
the program knows the printer is available, it doesn't consider the possibility that the printer 
is unavailable. 

Unfortunately, there is a short window of vulnerability between the time that a process 
checks whether the printer is available and the time it takes the printer over. It takes a little 
time to examine the variable that says that the printer is free, call the right routine when the 
printer is available,find the data it's supposed to print, etc. During this short period, a second 
routine might take over the printer and start printing. 

Some programmers would argue that this is a rare event. They're right. The window of 
vulnerability is so small that it is hard to set up a situation in which the second process can 
snatch away the printer just before the first one gets back to it. However, these processes 
maybe run by customers thousands or millions of times. Even unlikely race conditions will 
occur in use. If the consequences of a race condition bug are severe enough, it must be fixed 
even it will only happen once per million times that the program is used. 

ASSUMPTION THAT A PERSON, DEVICE, OR PROCESS WILL RESPOND 
QUICKLY 
For example, the program puts a message on the screen and waits for a response for a few 
seconds. If you don't respond during this time-out interval, the program decides that you 
aren't there and halts. Similarly, another program trying to initialize a printer will wait only 
so long. The program will report that the printer is unavailable if it doesn't respond by the 
end of the time-out interval. Programs also impose time-outs while waiting for messages 
from other processes. 

Very short time-out intervals cause races. If you have to press a key within a few tenths of a 
second after a program displays its message, you will often lose the race, the program will 
decide that you aren't there, and stop. If it gives you a few seconds, you will usually win the 
race, but sometimes the time-out interval will end just as you notice and respond to the 
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message. If the program gives you minutes to respond, it is probably safe to assume that you 
are not there or are not going to respond. The intervals are different for device, or process 
responses, but the principle is the same. Some intervals are too short, some are just a little 
too short, and some are plenty long enough. 

If the interval is too short, the programmer has probably anticipated that the program will 
time out before the person, device or process has had a chance to complete its response. 
Since this isn't an unusual case, he probably has good recovery code to deal with this. This 
isn't a classical race condition. 

If the interval is just a little too short, the risks are higher. The programmer might believe 
that if the program doesn't receive a response within the specified period, it will never 
receive a response. What happens if the response arrives milliseconds after the time-out 
interval has ended? The program might interpret this as a response to some other message, or 
it might just crash. This is a classic race because it is unlikely, but not impossible, for the 
response to occur after the time-out period is over. 

OPTIONS OUT OF SYNCH DURING A DISPLAY CHANGE 
The computer displays a menu and waits for your response. Triggered by a time-out or by 
another event (a message or a device input), the program switches to another menu. You 
press a key just as the program is writing the new menu. Here are two possible errors: 

●     Even though it's displaying the new options, the program will interpret your keypress 
as selecting a choice from the old menu if it hasn't yet updated its list of choices 
associated with keystrokes. 

●     Even though it's displaying the old options, the program will interpret your keypress 
as selecting a choice from the new menu, because it updated its key-to-option list 
before displaying the new values onscreen. 

This is a real-user problem. Experienced users of a program know when the menu will 
change. Many make their responses as soon as possible, so they will frequently press a key 
just as the screen is being repainted. 

TASK STARTS BEFORE ITS PREREQUISITES ARE MET 
The program starts sending data to the printer just before the printer is ready, starts trying to 
fill memory with data just before it's assigned a memory area to work with, etc. Perhaps the 
program is supposed to wait until it receives a specific message from another process before 
starting the task. But based on other information (such as other messages), the programmer 
knows that the trigger message will come soon. He starts this task early, to improve 
performance. The prerequisite tasks are usually completed in time, but occasionally the 
program is just barely ahead of them. 
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MESSAGES CROSS OR DON'T ARRIVE IN THE ORDER SENT 
Suppose you have $1000 in a bank account, and you try to do three things, in order: 

(a) withdraw $1000
(b) deposit $500
(c) withdraw $100

The first withdrawal goes through. The deposit is accepted, but when you try withdraw the 
$100, you're told that your account's balance is zero, not $500. For some reason, your deposit 
has taken longer to process than your request for a withdrawal. 

Problems of this class are common in message-passing systems: some messages are 
transmitted along circuitous routes, or their contents have to be verified, or for some other 
reason they don't arrive at their target process or aren't read by it before another message that 
was sent later. As a result, until the system catches up, you aren't (are) able to do something 
that you should (shouldn't) be able to do. 

The most annoying version of this involves contradictory messages that cross each other's 
path. One process requests an action of another. The second process sends a message 
indicating that it can do that task (e.g., gives a receipt for the $500), but then sends a 
message saying that it can't (your balance is zero). The verification message that you 
deposited $500 reaches you and the central database at the same time, and just after your 
request for $100 reaches the database. To the database, it seemed that you asked for $100, 
then deposited $500, but because you received early verification, it seems to you that the 
database should have known about the $500 when it rejected the withdrawal.   

LOAD CONDITIONS 
Programs misbehave when overloaded. A program may fail when working under high 
volume (lots of work over a long period) or under stress (maximum amount of work all at 
once). It may fail when it runs out of memory, printers or other "resources." It may fail 
because it's required to do too much in too little time. All programs have limits. The issues 
are whether a program can meet its stated limits and how horribly it fails when those limits 
are exceeded. 

Also, some programs create their own load problems, or, in multi-processing situations, 
make problems for others. They hog computer time or resources or create unnecessary extra 
work to such an extent that other processes (or themselves later) can't do their tasks. 

REQUIRED RESOURCE NOT AVAILABLE 
The program tries to use a new device or store more data in memory, but can't. Run separate 
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tests run for the program's handling of each of the conditions below, and similar tests for any 
other device you use (plotters, telephones, etc.). The following conditions should be self-
explanatory: 

●     Full disk 
●     Full disk directory 
●     Full memory area 
●     Full print queue 
●     Full message queue 
●     Full stack 
●     Disk not in drive 
●     Disk drive out of service 
●     No disk drive 
●     Printer off line 
●     Printer out of paper 
●     Printer out of ribbon 
●     No printer 
●     Extended memory not present 

DOESN'T RETURN A RESOURCE 
Systems may run out of resources because one or a few processes hog them all. 
Programmers are good at making sure that their programs get the resources they need. They 
are not as conscientious about returning resources they no longer need. Since the program 
won't crash (usually) if it hangs on to the printer or a memory buffer for too long, this type of 
problem seems less urgent. 

The following sections are examples to consider when designing test cases. 

Doesn't indicate that it's done with a device 
For example, a process uses the printer. All other processes have to wait until this one 
signals that it's done. The process fails to send that signal, and so prevents others from using 
an unused device. 

Doesn't erase old files from mass storage 
The program doesn't erase outdated backups and internal-use temporary files. There are 
limits on how much erasure should be done automatically, but the process doesn't get rid of 
files that obviously should go. 

Doesn't return unused memory 
In multi-processing systems, a memory management process can assign segments of 
memory to processes on a temporary basis (such as data and message buffers). The process 
is supposed to signal the memory manager when done with a segment. The manager takes 
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back control of the segment and assigns it for use by other processes as needed. Failure to 
return buffers, especially message buffers, is extremely common. 

Wastes computer time 
The process checks for events that are no longer possible or does other things that used to be 
necessary but now aren't. 

NO AVAILABLE LARGE MEMORY AREAS 
In a message passing, multi-processing system, a pool of memory is available to be assigned 
as message buffers to any process. Some buffers are large, others just a few bytes. A large 
block of memory might be divided into many small buffers. What happens when the 
program needs a larger block of memory than any of these small ones? 

Some memory management programs don't attempt to merge used buffers into the memory 
pool. Instead, they reuse these old buffers whenever a buffer their size is needed. As a result, 
there are few large areas of memory in the common pool. 

INPUT BUFFER OR QUEUE NOT DEEP ENOUGH 
The process loses keystrokes, messages, or other data because too much comes at once and 
there's nowhere to put it all. When a process receives more individual data items (like 
keystrokes) than it can immediately handle, it usually stores the extras in an input buffer, 
reading them from the buffer and dealing with them when it has time. Similarly, it might 
store packets of information (like messages) in a queue, getting to them one at a time. 

If the process' input buffer is 10 characters deep, what happens if you type 11 (or more) 
characters quickly? Does it signal that the buffer is full? What if the device sending input is a 
computer, connected to a modem? Does the program tell the sending program to stop for a 
while? 

If the process' message queue is 256 messages deep, what happens when 256 messages are 
waiting, one is being processed, and the 257th arrives? Is it discarded or is it returned to the 
sender with an error code signaling that the message queue is full? If a few messages are 
discarded without notification, what is the most consequential message discarded? What 
important information has the receiving process lost that the sending process will assume 
was received? 

DOESN'T CLEAR ITEMS FROM QUEUE, BUFFER, OR STACK 
Suppose the program receives messages, puts them in a queue, and reads them from the 
queue when it has time. It can store up to 256 messages in the queue. When it reads a 
message, the process should remove it from the queue, making room for a new one. 
However, programmers may forget to remove debugging messages, so the queue fills as 
soon as the program tries to use the queue for the 257th time. 
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In more subtle cases (similarly for failures to return buffers), messages are usually but not 
always removed from the queue. In one special case, the program doesn't discard old 
messages. It fails on the 257th time that this bug is triggered. It's because of these kinds of 
errors that you should occasionally test a program for a long time without rebooting it. Make 
sure that a minor problem, invisible over short periods, doesn't eventually devastate the 
system. A "long time" is defined in terms of your customers' needs. They will restart a word 
processor much more often than a telephone system. You might test the word processor for 
hours before rebooting, the telephones for weeks or months. 

LOST MESSAGES 
The operating system might lose some messages (presto, vanish). Or the receiving process 
might, if enough messages arrive at once. If a process is supposed to be able to handle a 
queue of 256 messages, what happens to the message it's working on, the message at the start 
of the queue, and the one at the end, when the 256th message arrives? What happens with the 
257th, 258th, and 259th messages? Are they returned to the sending process with a "send-me-
again-later" notification or are they just thrown away? Does the sending process need to 
know that the process it sent a message to was too busy to read it? 

PERFORMANCE COSTS 
When the workload is high, everything slows down. Larger arrays have to be searched, more 
users or processes have to be served, etc. A program that must respond within a certain time 
or process so many events per second might fail because it's running under too busy a multi-
processing system or because it's trying to juggle too many inputs itself. Other programs, 
expecting that this one will respond within a short interval, might also fail if this one 
responds too slowly. 

RACE CONDITION WINDOWS EXPAND 
As performance gets worse, race conditions become more likely. In the classic race, two 
events can happen. One almost always precedes the other but sometimes the second will (or 
will appear to) precede the first by a tiny bit. As you slow the system down, it may take the 
computer longer to generate or detect the first event. If the second event is an input 
(keystroke or modem input), the person or machine that generates it may not be affected by 
the increased load. The second event will happen as quickly as usual even though the 
processing of the first has slowed. Thus there is more time for the second event to appear to 
beat the first. 

DOESN'T ABBREVIATE UNDER LOAD 
Some processes make lots of output. Formatting all this information and sending it to the 
printer or screen takes lots of computer time. When the computer is operating under heavy 
load, an output-intensive process should try to send out less. It might express error messages 
more tersely, or abbreviate system log messages to short codes or send them to a buffer or 
disk file to be printed later. Only urgent messages should go to the printer or screen 
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immediately. 

Use your judgment before criticizing a program that doesn't abbreviate or run at lower 
priority. A word processing program that is about to print the agenda for a board meeting 
that starts in three minutes should neither delete items from the agenda nor wait till 
tomorrow before printing it. 

DOESN'T RECOGNIZE THAT ANOTHER PROCESS ABBREVIATES OUTPUT 
UNDER LOAD 
Imagine a multi-user system in which all programs log failures and other "interesting" events 
to the system operator's console. Usually, the log messages include a few numbers plus 
English-language descriptions. Under heavy load, the messages are abbreviated to short 
numeric codes. No one can understand the codes without looking them up in a book, but at 
least the messages themselves don't further slow down the system. 

Now suppose these logs are stored on disk. At the end of every day (week, month), a 
maintenance program reads the files and analyzes the system's failures, perhaps running 
hardware diagnostics in response to some of the messages. This maintenance program will 
have to be able to cope with the short code abbreviation system, or it will fail whenever it 
has to read a message that was saved when the system was under heavy load. A dismaying 
number of analysis programs do not know how to deal with abbreviated output. 

LOW PRIORITY TASKS NOT PUT OFF 
Under heavy load, any task that doesn't have to be done immediately should be postponed. In 
a multi-processing system, programs or people are assigned priorities. Those with higher 
priorities should get a higher share of available machine time than those with lower 
priorities. 

LOW PRIORITY TASKS NEVER DONE 
You can put off changing the oil in your car for a while, but eventually it must be done or 
else. Many low priority tasks are like this: you don't have to do them right away, but they 
must be done eventually. High priority tasks cannot be allowed to use all of the computer's 
time under prolonged periods of heavy load. Some time must be given to lower priority 
tasks.   

HARDWARE 
Programs send bad data to devices, ignore error codes coming back, try to use devices that 
aren't there, and so on. Even if the problem is truly due to a hardware failure, there is also a 
software error if the software doesn't recognize that the hardware is no longer working 
correctly. 
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WRONG DEVICE 
For example, the program prints data on the screen instead of the printer. 

WRONG DEVICE ADDRESS 
In many systems, a program writes data to a device by writing them to one or a few 
addresses in memory. The physical copying of data from these special memory locations to 
the devices themselves is taken care of by hardware. The program might write the data to the 
wrong memory location(s). 

DEVICE UNAVAILABLE 
See "Required resource not available" earlier in this Appendix. 

DEVICE RETURNED TO WRONG TYPE OF POOL 
For example, in a multi-processing system there might be many dot matrix printers and many 
laser printers. A program uses a dot matrix printer, then signals that it's done with it. On 
returning it to the pool of available devices, the resource manager erroneously marks it as an 
available laser printer. 

DEVICE USE FORBIDDEN TO CALLER 
For example, you might not be allowed to use this expensive or delicate device. Programs 
running under your user ID can't use the device and must be able to recover from the refusal. 

SPECIFIES WRONG PRIVILEGE LEVEL FOR A DEVICE 
To use a device (for example, to read a certain file or to place a long distance phone call), the 
program must supply a code that indicates its privilege level (often the privilege level of the 
person using the program.) If its privilege level (or priority) is high enough, the program gets 
the device. 

NOISY CHANNEL 
The program starts using a device, such as a printer or a modem. A communication channel 
links the computer and the connected device. Electrical interference, timing problems or 
other oddities might cause imperfect transmission of information over the channel (we.e., the 
computer sends a 3 but the device receives a 1). How does the program detect transmission 
errors? What does it do to signal or correct them? 

CHANNEL GOES DOWN 
The computer is sending data through one modem across a telephone line to another 
computer (and modem). One of the modems is unplugged halfway through the transmission. 
How do the sending and receiving computers recognize that they are no longer connected, 
how long does it take them, and what do they do about it? Similarly, how does a computer 
recognize that it's connected to a no-longer-printing printer, and what does it do about it? 
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TIME-OUT PROBLEMS 
The program sends a signal to a device and expects a response within a reasonable time. If it 
gets no response, eventually the program must give up, deciding perhaps that the connected 
device is broken. What if it just didn't wait long enough? 

WRONG STORAGE DEVICE 
The program looks for data or a code overlay on the wrong floppy disk, removable hard disk, 
cartridge, or tape reel. Some programs announce that the information isn't there, then ask you 
to insert the right disk. Some look for the information on other drives first, then ask. Others 
just die. In one particularly feisty operating system, programs could destroy a floppy disk's 
directory while looking for a file that wasn't there. 

DOESN'T CHECK DIRECTORY OF CURRENT DISK 
Insert one disk (hard disk pack, tape), work with it, then remove it and insert a different one 
into the same drive. Some operating systems don't detect the swap. They copy the directory 
of a disk into memory and don't read it again from the disk unless you explicitly tell them to. 
If you don't force a reboot or a directory reread, they'll use the old directory when trying to 
read or write to the new disk, reading gibberish and destroying the new disk's data when they 
write. 

DOESN'T CLOSE A FILE 
When the program finishes with a file (especially if it's been writing to the file), it should 
close the file. Otherwise, changes made to the file during this session might not be saved on 
disk, or further changes may be added inadvertently. Open files can be destroyed or 
corrupted when you turn the machine off. Programs should close all open files as part of 
their exit procedures. 

UNEXPECTED END OF FILE 
While reading a file, the program reaches the end-of-file marker. Suppose the program 
expects to find specific data later in the file. Does it ignore the end-of-file and try to keep 
reading? Does it crash? 

DISK SECTOR BUGS AND OTHER LENGTH-DEPENDENT ERRORS 

Disk storage is done in chunks (sectors) of perhaps 256 or 512 bytes. Many other values, 
usually powers of 2, are common. Some programs fail when they try to save or read a file 
that is an exact multiple of a sector size. For example, if sectors are 1024 bytes, a program 
might be unable to save files that are 1024, 2048, 3072, etc., bytes long. (Similarly, a 
program that copies data to an output buffer of a fixed size might fail if the number of bytes 
to go is the same size as the buffer.) 

The last character of each sector, or only the last character of the file, might be miscopied, 
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copied twice, or dropped. In more extreme cases, the program corrupts the entire file or 
overwrites the next file on disk. 

WRONG OPERATION OR INSTRUCTION CODES 
The program sends a command to the terminal that is supposed to reposition the cursor 
onscreen but it turns on inverse video display mode instead. The program sends a command 
to the printer to do a form feed, but the printer line feeds instead. 

Devices are not standardized. Two printers probably require two different commands to do 
the same thing. Similarly for terminals, plotters, and A/D converters. The program must 
issue the right command for this device to get the right task done. 

MISUNDERSTOOD STATUS OR RETURN CODE 
The program sends a command to the printer telling it to turn on boldfacing. The printer may 
respond, saying it can or can't do this. It may indicate why it can't carry out the command (e.
g., no paper, no ribbon, no such command, option module not installed.). Many programs 
ignore these codes, or compare them against a list of codes written for the wrong machine or 
compiled years ago. 

DEVICE PROTOCOL ERROR 
The communication protocol between the computer and a device or between two computers 
specifies such things as when the computer can send data, at what speed, and with what 
characteristics (parity, stop bits, etc.). It also specifies whether and how the receiving device 
will signal that it got the data, that it's ready for more, or that it can't take any more until it 
clears some of the buffer that it's working with. 

A device might send data or respond out of turn, or it might send the data in the wrong 
format. 

UNDERUTILIZES DEVICE INTELLIGENCE 
As a simple example, if the printer can print boldface text directly, why try to simulate 
boldface by printing on top of the same character three or four times? One possible answer is 
that the program was designed with less capable printers in mind, and has not been updated 
to take advantage of this printer's features. 

A connected device might be able to define its own fonts, detect its own error states, etc., but 
the program using the device must recognize this or it won't make any use of these advanced 
capabilities. 

This can be a touchy issue. Printers' control codes differ by so much that it is very expensive 
to try to support all the built-in features of every printer. Some printer manufacturers have 
made this problem even more complex by including certain control codes in one ROM 
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version for a printer, but including different codes in other ROMS, plugged into the same 
(from appearance and model number) printer. 

PAGING MECHANISM IGNORED OR MISUNDERSTOOD 
This is a memory storage issue. Memory might be divided into sections called pages. A 
program might not be able to read from all pages at once or switch pages (or memory banks) 
correctly. 

Larger computers use disk storage as virtual memory. The program refers to data without 
knowing whether they reside in memory or on disk. If the program references a nonresident 
set of data or code, a page fault has occurred. The computer fetches the page containing this 
information from disk automatically, overwriting data that were resident. The operating 
system usually takes care of paging (swapping data and code between main memory and a 
disk), but a few programs try to do it themselves. A program might overwrite a memory area 
without first saving new data that were stored there. 

A program that thrashes is constantly generating page faults: the computer spends more time 
moving data in and out of main memory than it does executing the program. With a little 
reorganization of the code or the data, many programs can avoid thrashing. 

IGNORES CHANNEL THROUGHPUT LIMITS 
Examples: 

●     The program tries to send 100 characters per second across a connection that only 
supports transmission of up to 10 characters per second. 

●     The program can send data at a fast rate until the connected device's input buffer is 
full. Then it has to stop until the device makes more room in its input buffer. Some 
programs don't recognize signals that the device is no longer ready to receive more 
data. 

ASSUMES DEVICE IS OR ISN'T, OR SHOULD BE OR SHOULDN'T BE 
INITIALIZED 
Before sending text to the printer, a word processing program sends an initialization message 
telling the printer to print ten characters per inch in a certain font, without making them bold 
or italicized. Should it have sent this message? This wastes time if the printer was already 
initialized. It is irritating if you deliberately initialized the printer to a different setting before 
trying to print the file. On the other hand, if the printer is set to an unsuitable font, the 
printout will be unsatisfactory and the failure to initialize will have wasted time and paper. 
Which error is more serious? 

ASSUMES PROGRAMMABLE FUNCTION KEYS ARE PROGRAMMED 
CORRECTLY 
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A programmable function key might be able to generate any code or any reasonably short 
sequence of codes when pressed. The program might expect these keys to generate specific 
codes, but if you can reprogram the keys, the program might be wrong. For example, 
suppose that function key normally generates . A program says Press PF-1 to Print. It 
switches to its Print Menu when it receives . What if you reprogram so that it generates 
instead? Press PF-1 to Print is no longer true. 

If the program relies on the assignment of special values to programmable function keys, 
when it starts it has to make sure that those keys have been assigned those values.   

SOURCE, VERSION, AND ID CONTROL 
If you're supposed to have Version 2.43 of the program, but some of the pieces you have are 
from 2.42 and others are advance bits of 2.44, you have a mess. You must know what you 
have, you must be able to tell from the code what you have, and what you have must be what 
you're supposed to have. If not, report a bug. 

Some people calls these Bureaucracy Bugs because they reflect failures of labeling and 
procedure rather than operational failures. Only bureaucrats would worry about such things, 
right? Wrong. Or maybe right, but so what? They must be worried aboutóotherwise the 
products shipped to customers will not be what you think. 

OLD BUGS MYSTERIOUSLY REAPPEAR 
Old problems can reappear simply because the programmer linked an old version of one 
subroutine with the latest version of the rest of the program. Many programs are split across 
dozens or hundreds of files: Programmers who don't purge old files frequently link old code 
with new by accident. 

FAILURE TO UPDATE MULTIPLE COPIES OF DATA OR PROGRAM FILES 
Some programmers repeat the same code in many different program modules. When they 
have to change this code, they may update 20 of the 25 copies of it, forgetting the others. As 
a result, they might fix the same error 20 times, but you might still find 5 more just like it the 
next time you test. 

NO TITLE 
The program should identify itself when it starts. You should know right away that you are 
now running Joe Blow's Super Spreadsheet, not Jane Doe's Deluxe Database. 

NO VERSION ID 
The program should display its version identification when it starts or when you give it a 
display version command. Customers should be able to find this ID easily, so they can tell it 
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to you when they call to complain about the program. You should be able to find the ID 
easily so that you can tell it to the programmer when you find bugs. 

If the program is made of many independently developed pieces, it pays to be able to identify 
the version of each piece. These IDs may not display automaticallyóyou may have to use a 
debugger or a special editor to find them. They are useful if they exist and if they are kept up 
to date by the programmers. However, unless you have firm management backing, do not 
insist that programmers compile separate version IDs for each module. 

WRONG VERSION NUMBER ON THE TITLE SCREEN 
Programs usually display a version number on the title screen or in an About dialog box. 
Usually, the programmer can change the code much faster than she can keep the correct 
version number updated on the title screen. The result is you might be using software version 
2.1 but the title screen still shows 2.0. 

NO COPYRIGHT MESSAGE OR A BAD ONE 
The program should display a copyright message as soon as it starts. The message should 
include the copyright symbol (it is common to use (C)), the year(s) that the program was 
developed, copyrighted or shipped, your company's name and address, and the words All 
Rights Reserved. We use the following form: 

Copyright © 1979, 1983, 1987, 1993
Cem Kaner, Human Interface Technologies

801 Foster City Blvd. #101, Foster City, CA 94404
All Rights Reserved

If an earlier version of the program showed a copyright year of 1979, you should still say 
1979 in this notice, along with this year's date. For more details, ask your company's 
attorney. 

ARCHIVED SOURCE DOESN'T COMPILE INTO A MATCH FOR SHIPPING 
CODE 
Before releasing a product to any customer, archive the source code. If the customer finds a 
bug, your company must be able to recompile this code and regenerate the product that the 
customer has. Without this starting point, you will have major problems addressing that 
customer's difficulties. This should be obvious, but it seems not to be. I've been amazed at 
how many companies can't recreate products they sell. They may have archival copies of 
source code, but the code in their vaults is a bit different from the code in the product they 
shipped. This is begging for a disaster. If you report that archives are not up to date with 
code that is about to be shipped, and are rebuffed, take it to a higher level. The president and 
the company lawyer might be much more concerned by this problem than mid-level 
engineering or marketing managers. 
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MANUFACTURED DISKS DON'T WORK OR CONTAIN WRONG CODE OR 
DATA 
When the disks have been duplicated and the product is ready to ship, check a few disks. We 
are not suggesting that you take over the role of manufacturing QA. We are suggesting that 
any error that occurs in all manufactured copies of the product is an error you should find. 

Disk duplicators might crank out blank disks instead of the copies you expected them to 
make. It is embarrassing when you ship blanks as the product, and expensive to send 
customers replacement disks. This does happen. Over the last two years, I've received blank 
disks as a customer three times (three different companies). Similarly, the manufacturing 
group might duplicate the wrong version (Version 1.0 again instead of 2.0) or the wrong 
program (buy a database, get a spreadsheet instead), sometimes because you gave them the 
wrong disks to duplicate.   

TESTING ERRORS 

This section deals with technical, procedural, and reporting errors made by testers and 
Testing Groups. Even though these aren't problems in the programs per se, you'll run into 
them when testing programs. Our focus is on suggestions for dealing with these problems, 
since they're under your control. 

MISSING BUGS IN THE PROGRAM 
You will always miss bugs because you can't execute all possible tests. However, you'll 
probably miss more bugs than you have to. When a bug is discovered in the field or late in 
testing, ask why. Not to assign blame but to look for ways to strengthen your test procedures. 

Failure to notice a problem 
You may miss a bug that a test exposes because: 

●     You don't know what the correct test results are. Whenever possible, include expected 
results in the test notes. In automated tests, display them beside test results on the 
screen and on printouts. 

●     The error is buried in a massive printout. People scan long outputs quickly. Keep 
printouts as short as you can, and make errors obvious at a glance. Patterned outputs 
are good. If possible, redirect long outputs to a disk file; have the computer check this 
against a known good file. 

●     You don't expect to see it exposed by this test. While a test may be designed to focus 
on one small part of a program it can still reveal other, unexpected, bugs. Beware of 
tunnel vision. 

●     You are bored or inattentive. Rotate tasks across testers. Try not to have the same 
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person run the same test more than three times. 
●     The mechanics of running the test are so complicated that you pay more attention to 

them than to the test outputs. You will be distracted by files or printouts with 
erroneous comparison data, poorly organized checklists, procedures that require you 
to swap disks or tapes frequently, and tasks that you have to redo from the start if you 
make an entry error. 

Misreading the screen 
You can easily miss errors like spelling mistakes, missing menu items, and misaligned text. 
Reserve some time exclusively for scrutinizing the screen. It's just like proofreading 
manuscripts: unless you're consciously looking for spelling and layout errors, you'll see what 
you expect to see, filling in gaps and correctly spelling mistakes unconsciously. 

Failure to report a problem 
You may find a problem and not report it because: 

●     You keep poor notes 
●     You're not sure if it's a bug and are afraid to look silly 
●     You think it's too minor or you don't think it will be fixed 
●     You're told not to report bugs like this any more 

These are not acceptable reasons. If you're not sure whether something is a problem, say so 
in the report. Appeal to higher management to relieve criticism for reporting minor or 
politically inconvenient bugs. It is your responsibility to report every problem you find. 
Deliberate suppression of bug reports leads to confusion, poorer tester morale, and a poorer 
product. It can also bring you into the middle of nasty office politics, possibly as a scapegoat. 

Failure to execute a planned test 
You may not execute a planned test because: 

●     Your test materials or notes are disorganized. You've lost track of what has been 
tested. 

●     You are bored. The test series is repetitive. You take shortcuts by skipping tests that 
are similar to others. To reduce this, rotate tasks among testers. Reduce repetition by 
combining cases, cutting some out, or running some tests only on every second or 
third cycle of testing. 

●     You have combined too much into one test. If one test is buried inside another, or 
depends on another, then if that other test fails, this test probably won't be executed. 
Overly complex combinations of test cases can lead to missed tests because they 
confuse you. 

Failure to use the most "promising" test cases 

file:///E|/LogiGear/2004_Website_Update/Articles/common_errors.html (85 of 89)7/28/2005 9:44:26 AM



Appendix : Common Software Errors

If two test cases cover essentially the same code, you should use the one most likely to 
reveal an error (see Chapter 6). 

Ignoring programmers' suggestions 
The programmer knows better than anyone else which areas of the program he tested least, 
and which ones proved least stable under his testing. He knows which areas he coded 
quickly. He knows which special types of tests have exposed bugs so far. Rigid test plans 
and bad politics are problems in their own right, but they are not excuses for ignoring 
programmers' tips. 

FINDING "BUGS" THAT AREN'T IN THE PROGRAM 
You report an error. Eventually, the problem is traced to a flaw in your test procedure, a 
misunderstanding of the program, or to something else that you did. This wastes time and 
does your credibility no good. 

Errors in testing programs 
When you automate tests, you write programs to drive test cases. Your test programs will 
have bugs. Some will abort your tests, or skip them. Others will make the program appear to 
fail tests that it can actually pass. It is common to compare test data against incorrect "known 
good" results. Your disk files and printed constants are no more likely correct than the 
program's output. 

You should manually reproduce any automated tests that reveal errors. This doesn't take all 
that much time because you only redo tests that the program fails. Unless the program is in 
disastrously bad shape, it won't fail many tests. 

Corrupted data file 
Some apparent bugs are due to a bad data file that you're using while testing. Programs will 
trash input, output, and comparison files. Your files may be corrupted at any time, even by 
program segments that, if they were error-free, wouldn't read or write these files. When a 
program is in testing, it doesn't matter that it isn't supposed to touch a file. If the program 
worked the way it was supposed to, you wouldn't have to test it. It is wise to keep three 
backup copies of test files on separate disks or tapes. Before reporting an error, check your 
working copies of the input and comparison files against the backups. 

Misinterpreted specifications or documentation 
You think the program works incorrectly because you've misunderstood the documentation. 
This is unavoidable. Specifications are outdated, and early versions of the documentation are 
rough. You rarely have much time to read before starting to test the program. 

When you find an error, unless you're sure you understand what's happening in this part of 
the program, reread the relevant sections of the documentation and specifications. If you're 
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not sure whether what you've got is an error, write your report as a Query. If the manual's 
unclear, file a Problem Report on that part of the manual too. 

POOR REPORTING 
It's not enough to find a bug. You have to communicate it to someone who can fix it, in a 
way that makes it as easy as possible for that person to figure out what went wrong and what 
to do about it. How well you describe the problem will directly affect how easily it is 
resolved. 

Illegible reports 
If the programmer finds it hard to read a report, he will ignore it for as long as possible. 
Many reports are hard to read because you pack too much information into them. Put 
separable problems on separate report forms. If a single problem requires a long description, 
type it on a separate page and attach it to the Problem Report. 

Failure to make it clear how to reproduce the problem 
You report a problem without outlining, step by step, what the programmer must do to see it. 
This is the most common error in problem reporting. It saves time to skip the details, but 
realize that the first thing that the programmer is going to do with your report is sit at the 
machine and try to see the problem himself. If he can't reproduce the problem, he won't fix it. 

For anything complicated, attach a copy of any data files you were using, a keystroke by 
keystroke list of things you did, a printed dump of the screen if your operating system 
supports this, or any other comments or materials that will make the programmer's job easier. 
The nearer you are to the development deadline, the more important this is. 

Failure to say that you can't reproduce a problem 
If you can't consistently reproduce the problem, say so. This tips off the conscientious 
programmer that he should try variations on the conditions you describe. A non-
conscientious programmer might ignore your report as soon as she sees that you can't 
replicate it, but she'd toss away the report anyway after trying exactly what you say you did 
and, like you, failing to see the bug. 

Failure to check your report 
After writing a report, but before submitting it, follow it step by step to reproduce the 
problem. This costs a few moments but it catches transcription and other reporting errors that 
you make. It is all too easy to omit or misdescribe important details, especially if you're 
writing the report from notes or memory, long after seeing the bug. 

Failure to report timing dependencies 
You might not notice that to reproduce a bug you have to press two keys within milliseconds 
of each other, or that you have to wait at least 5 minutes between keystrokes. Sometimes you 
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will just not realize that you're dealing with a race condition or other time-dependent bug. If 
you do notice a time dependence, say so. Clock it as well as you can. If you didn't notice a 
time dependence, look for one when a report comes back to you as irreproducible. 

Failure to simplify conditions 
You will often use complex test cases, combining many different tests into one, for speed of 
testing. If all goes well, you've gotten through many tests quickly. When a bug does show 
up, spend time looking for the simplest series of steps possible to reproduce it. Try not to lay 
out a long and complicated series that includes irrelevancies. Complex reports are 
disheartening to read and tempting to ignore. 

Concentration on trivia 
Don't make big issues over small problems. Don't get too far drawn into long arguments over 
wording, or style of presentation. Don't exaggerate the severity of bugs. Be wary of getting a 
reputation as a nitpicker. 

Abusive language 
If you refer to work as "unprofessional," "sloppy," or "incompetent," expect the programmer 
who did it to get angry. Don't bet that he'll fix the bug, even if it's serious. It can be useful to 
shock a programmer occasionally, but be conscious of what you're doing. Do it rarely (once 
a year). 

POOR TRACKING OR FOLLOW-UP 
It's not enough to just report a bug. You've got to make sure that it's noticed and not 
forgotten. Otherwise, bugs will "slip through the cracks" and make it into the shipping 
product. 

Failure to provide summary reports 
Don't assume that just because you gave it to a programmer, it's being dealt with. Some 
programmers lose reports. Others use them to make paper airplanes or wrap fish. Some also 
hide reports from their managers. Every week or two, you should circulate a brief description 
of unfixed bugs. Make this a standard procedure, for all bugs, to keep it impersonal and 
uncontroversial. 

Failure to re-report serious bugs 
If the bug is serious, don't automatically accept a response of Deferred or Works to Spec. 
Figure out a way to make it look a little worse and report it again. If it's an ugly, horrible 
bug, make it sound that way the second time. If that doesn't work, send a copy of the third 
report to a more senior manager. 

Failure to verify fixes 
A programmer reports that he fixed a problem. Don't take his word for it without retesting. 
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Up to a third of the fixes either won't work or will cause other problems. Further, some 
programmers only address the exact, reported symptoms. Instead of investigating the causes 
of a problem, they write special-case code to handle the precise circumstances reported. If 
you skimp on regression testing, you will assuredly miss bugs. 

Failure to check for unresolved problems just before release 
Just before the product is released for use or sale, check for problems that are neither fixed 
nor deferred. It's good practice, which we recommend highly, to make sure that all Problem 
Reports are resolved one way or another before the product is released. At a minimum, make 
sure no one's sitting on anything serious. This is your last chance to remind people of serious 
bugs.   
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