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Abstract—Construct validity is about the question, how we know that we're measuring the attribute that we think we're measuring?

This is discussed in formal, theoretical ways in the computing literature (in terms of the representational theory of measurement) but

rarely in simpler ways that foster application by practitioners. Construct validity starts with a thorough analysis of the construct, the

attribute we are attempting to measure. In the IEEE Standard 1061, direct measures need not be validated. "Direct" measurement of

an attribute involves a metric that depends only on the value of the attribute, but few or no software engineering attributes or tasks

are so simple that measures of them can be direct. Thus, all metrics should be validated. The paper continues with a framework for

evaluating proposed metrics, and applies it to two uses of bug counts. Bug counts capture only a small part of the meaning of the

attributes they are being used to measure. Multidimensional analyses of attributes appear promising as a means of capturing the

quality of the attribute in question. Analysis fragments run throughout the paper, illustrating the breakdown of an attribute or task of

interest into sub-attributes for grouped study.

Index Terms—D.2.8 Software Engineering Metrics/Measurement, D.2.19.d Software Engineering Measurement Applied to SQA and

V&V.
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1 INTRODUCTION

e hear too often that few companies establish meas-

urement programs, that fewer succeed with them, or

that many of the companies who have established met-

rics programs have them in order to conform to criteria estab-

lished in the Capability Maturity Model. [1]

One could interpret this as evidence of the immaturity and

unprofessionalism of the field or of resistance to the high cost

of metrics programs (Fenton [1] estimates a cost of 4% of the

development budget). In some cases, these explanations are

undoubtedly correct. In other cases, however, metrics pro-

grams are resisted or rejected because they do more harm than

good.

Robert Austin [2] provided an excellent discussion of the

problems of measurement distortion and dysfunction in gen-

eral. In this paper, we explore one aspect of the problem of

dysfunction. We assert that Software Engineering as a field

presents an approach to measurement that underemphasizes

measurement validity (the condition that the measurement

actually measures the attribute in question). This has a likely

consequence: if a project or company is managed according to

the results of measurements, and those metrics are inade-

quately validated, insufficiently understood, and not tightly

linked to the attributes they are intended to measure, meas-

urement distortions and dysfunctional should be common-

place.

After justifying our basic assertion, we lay out a model for

evaluating the validity and risk of a metric, and apply it to a

few metrics common in the field. Not surprisingly (given our

main assertion), serious problems will show up.

In the final section of this paper, we suggest a different ap-

proach: the use of multidimensional evaluation to obtain

measurement of an attribute of interest. The idea of multidi-

mensional analysis is far from new [3], but we will provide

detailed examples that appear to have been used effectively at

the line manager level, in the field. A pattern of usability and

utility emerges from these examples that, we hope, could

stimulate further practical application.

2 WHAT ARE WE MEASURING?

2.1 Defining Measurement

To provide context for the next two sections, we need a defi-

nition of measurement. To keep the measurement definitions

in one place, we present several current definitions here. We'll

distinguish between them later.

•  "Measurement is the assignment of numbers to objects

or events according to rule. [4] The rule of assignment

can be any consistent rule. The only rule not allowed

would be random assignment, for randomness amounts

in effect to a nonrule." [5, p. 47]

• "Measurement is the process of empirical, objective, as-

signment of numbers to properties of objects or events

of the real world in such a way as to describe them." [6,

p. 6]

• "Measurement is the process by which numbers or sym-

bols are assigned to attributes of entities in the real

world in such a way as to characterize them according to

clearly defined rules." [7, p.5]

• Measurement is "the act or process of assigning a num-

ber or category to an entity to describe an attribute of

that entity." [8, p. 2]
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•  "Fundamental measurement is a means by which num-

bers can be assigned according to natural laws to repre-

sent the property, and yet which does not presuppose

measurement of any other variables" than the one being

measured. [9, p. 22]

More formal definitions typically present some variation of

the representational theory of measurement. [10] [7] [11] [12]

[13] Fenton and Pfleeger provide a concise definition:

Formally, we define measurement as a mapping from the empirical

world to the formal, relational world. Consequently, a measure is the

number or symbol assigned to an entity by this mapping in order to

characterize an attribute. [7, p. 28]

2.2 Developing a Set of Metrics

IEEE Standard 1061 [8] lays out a methodology for develop-

ing metrics for software quality attributes. The standard de-

fines an attribute as "a measurable physical or abstract prop-

erty of an entity." A quality factor is a type of attribute, "a

management-oriented attribute of software that contributes to

its quality." A metric is a measurement function, and a soft-

ware quality metric is "a function whose inputs are software

data and whose output is a single numerical value that can be

interpreted as the degree to which software possesses a given

attribute that affects its quality."

To  develop a set of metrics for a project, one creates a list

of quality factors that are important for it:

Associated with each quality factor is a direct metric that serves as a

quantitative representation of a quality factor. For example, a direct

metric for the factor reliability could be mean time to failure (MTTF).

Identify one or more direct metrics and target values to associate with

each factor, such as an execution time of 1 hour, that is set by project

management. Otherwise, there is no way to determine whether the

factor has been achieved. [8, p. 4]

For each quality factor, assign one or more direct metrics to represent

the quality factor, and assign direct metric values to serve as quantita-

tive requirements for that quality factor. For example, if "high effi-

ciency" was one of the quality requirements from 4.1.2, assign a direct

metric (e.g. "actual resource utilization / allocated resource utilization"

with a value of 90%). Use direct metrics to verify the achievement of

the quality requirements. [8, p. 6]

Use only validated metrics (i.e. either direct metrics or metrics vali-

dated with respect to direct metrics) to assess current and future prod-

uct and process quality (see 4.5 for a description of the validation

methodology). [8, p. 6]

Standard 1061 (section 4.5) lays out several interesting

validation criteria, which we summarize as follows:

1) Correlation. The metric should be linearly related to the

quality factor as measured by the statistical correlation

between the metric and the corresponding quality factor.

2) Consistency. Let F be the quality factor variable and Y

be the output of the metrics function, M: F->Y. M must

be a monotonic function. That is, if f1 > f2 > f3, then we

must obtain y1 > y2 > y3.

3) Tracking. For metrics function, M: F->Y. As F changes

from f1 to f2 in real time, M(f) should change promptly

from y1 to y2.

4) Predictability. For metrics function, M: F->Y. If we

know the value of Y at some point in time, we should be

able to predict the value of F.

5) Discriminative power. "A metric shall be able to dis-

criminate between high-quality software components

(e.g. high MTTF) and low-quality software components

(e.g. low MTTF). The set of metric values associated

with the former should be significantly higher (or lower)

than those associated with the latter.

6) Reliability. "A metric shall demonstrate the correlation,

tracking, consistency, predictability, and discriminative

power properties for at least P% of the application of the

metric."

The validation criteria are expressed in terms of quantita-

tive relationships between the attribute being measured (the

quality factor) and the metric. This poses an interesting prob-

lem—how do we quantify the attribute in order to compare its

values to the proposed metric?

2.3 "Direct" Measurement

The IEEE Standard 1061 answer lies in the use of direct met-

rics. A direct metric is "a metric that does not depend upon a

measure of any other attribute." [8, p. 2]

Direct metrics are important under Standard 1061, because

a direct metric is presumed valid and other metrics are vali-

dated in terms of it ("Use only validated metrics (i.e. either

direct metrics or metrics validated with respect to direct met-

rics)"). "Direct" measurement is often used synonymously

with "fundamental" measurement [9] and contrasted with indi-

rect or derived measurement [14].

The contrast between direct measurement and indirect, or

derived measurement, is between a (direct) metric function

whose domain is only one variable and a (derived) function

whose domain is an n-tuple. For example, density is a function

of mass and volume. Some common derived metrics in soft-

ware engineering are [7, p. 40]:

•  Programmer productivity (code size/ programming

time)

• Module defect density (bugs / module size)

•  Requirements stability (number of initial requirements /

total number of requirements)

• System spoilage (effort spent fixing faults / total project

effort)

Standard 1061 offers MTTF as an example of a direct

measure of reliability. But if we look more carefully, we see

that this measure is not direct at all. Its values depend on many

other variables. As we'll see, this is true of many (perhaps all)

software engineering metrics. Analyzing the components of

Mean Time To Failure:

•  Mean? Why calculate mean time to failure? Imagine

two subpopulations using the same product,  such as a

professional secretary and an occasional typist using a

word processor. The product might fail rarely for the

secretary (who knows what she's doing) but frequently

for the occasional typist (who uses the product in odd or

inefficient ways). These two types of users have differ-

ent operational profiles [15]. They use the product dif-
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ferently and they experience it differently (high versus

low reliability). The average (mediocre reliability) is not

representative of either group's experience. Perhaps

MTTF is an indirect measure of reliability, because it is

partially a function of the operational profile of the user

subpopulation. Similarly, if new users of a product tend

to experience more failures until they learn how to avoid

or work around the problems, mean time to failure is

misleading because the failure probability is not station-

ary. MTTF appears to be a function of the individual's

experience with the product, the user subpopulation's

operational profile, and the inherent reliability of the

product. What other variables influence the mean of the

times to failure?

•  Time? What time are we counting when we compute

mean time to failure? Calendar time? Processor time?

Suppose that User-1 operates the product for 10 minutes

per day and User-2 operates the product for 1440 min-

utes per day. Mean time to failure of two weeks suggests

appalling reliability if it is User-1's experience, but not-

so-bad reliability if it is User-2's. Another issue corre-

lated with time is diversity of use. A person who uses

the product the same way every time is less likely to ex-

perience new failures than one who constantly uses it in

new ways, executing new paths and working with new

data combinations. So, even if we agree on the temporal

unit (calendar time, processor time, user-at-the-

keyboard-time, whatever), we will still experience dif-

ferent mean times to failure depending on diversity of

use. A final example: if the user can recover from failure

without restarting the system, residue from a first failure

might raise the probability of the next. In a system de-

signed to recover from most failures, the system reli-

ability as estimated by time to next failure might be a

declining function of the time the product has been in

service since the last reboot.

•  To? Should we measure mean time to first failure or

mean time between failures? A program that works well

once you get used to its quirks might be appallingly un-

reliable according to MTT(first)F but be but rock solid

according to MTBF. Will the real measure of reliability

please stand up?

•  Failure? What's a failure? Program crash? Data corrup-

tion? Display of an error message so insulting or intimi-

dating that the user refuses to continue working with the

system? Display of a help message with a comma miss-

ing in the middle of long sentence? Display of a copy-

right notice that grants the user more rights than in-

tended? Any event that wastes X minutes of the user?

Any event that motivates the user to call for support? If

we define a failure as a behavior that doesn't conform to

a specification, and we ignore the reality of error-ridden

and outdated specifications, is there a rational basis for

belief that all intended behavior of a program can be

captured in a genuinely complete specification? How

much would it cost to write that specification? In 1981,

Gutenberg Software published The Gutenberg  word

processor for the Apple II computer. This was before

mice were in wide use—to designate a target for a

command, you used the keyboard. For example, in

command mode, the sequence "LL" set up scrolling by

lines, "LS" set up scrolling by sentences, "DL" deleted a

line, and "DS" deleted the entire screen. Some users

would scroll sentence by sentence through the document

while editing, and then type DS to delete a sentence.

There was no undo, so this cost a screenful of data.

Screens might include complex equations that took the

user hours to lay out. This was in the user manual and

was part of the intentional design of the product. Is this

irrecoverable (but specified) data loss a failure? Pre-

sumably, the set of events that we accept as "failures"

will influence the computed time to failure, and thus our

allegedly direct measurement of reliability.

We belabored analysis of MTTF to make a point. Things

that appear to be "direct" measurements are rarely as direct as

they look.

As soon as we include humans in the context of anything

that we measure—and most software is designed by, con-

structed by, tested by, managed by, and/or used by humans—a

wide array of system-affecting variables come with them. We

ignore those variables at our peril. But if we take those vari-

ables into account, the values of our seemingly simple, "di-

rect" measurements turn out to be values of a challenging,

multidimensional function. By definition, they are no longer

direct. Certainly, we can hold values of all those other vari-

ables constant, and restrict our attention to the marginal rela-

tionship between the attribute and the measured result, but

that's fundamentally different from the assertion that the value

of our metric function depends only on the value of the un-

derlying attribute.

Because direct measurements have the special status of in-

herent validity, there is an incentive to attribute directness to

many proposed measurements. Consider the four examples of

direct measurement provided by Fenton & Pfleeger:

• Length of source code (measured by lines of code);

•  Duration of testing process (measured by elapsed time in

hours);

•  Number of defects discovered  during the testing process

(measured by counting defects);

• Time a programmer spends on a project (measured by months

worked). [7, p. 40]

One problem with these measures is that, like MTTF, they

are intrinsically complex. (Like the MTTF analysis above, try

this: Lines of code? What's a line? What's code? How do peo-

ple interact with lines or code, and under what different situa-

tions? How do those differences affect the size or meaning of

the size of lines of code? Repeat the same analysis for the next

three.)

An different problem with these measures is that it is easy

to create a metric with a narrow definition that makes it look

direct but that will never be used as a measure of the defined

attribute. (Le Vie [16] makes this point nicely for an applied

audience.) For example, consider time on project, measured in

programmer-months. How often do we really want to know

about time on project for its own sake? What attribute are we
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actually trying to measure (what question are we actually try-

ing to answer) when we count programmer-months? The

amount of effort spent on the project? Difficulty of the pro-

ject? Diligence of the individual? Programmer-months is rele-

vant to all of these, but not a direct measure of any of them,

because many factors other than time on the clock play a role

in all of them.

Rather than define a metric in terms of the operations we

can perform (the things we can count) to compute it, we prefer

to think about the question we want answered first, the nature

of the information (the attributes) that could answer that ques-

tion, and then define measures that can address those attributes

in that context.

In practice, we question the value of distinguishing be-

tween direct and indirect metrics. All metrics need validation,

even the supposedly direct ones.

3 A FRAMEWORK FOR EVALUATING METRICS

The term, construct validity, refers to one of the most basic

issues in validation, the question: How do you know that you

are measuring what you think you are measuring?

In a check of the ACM Guide to the Computing Literature

(online, June 29, 2004), we found only 109 references that

included the phrase "construct validity." Of those papers,

many mentioned the phrase in passing, or applied it to meas-

urements of human attitudes (survey design) rather than char-

acteristics of a product or its development. In the development

of software engineering metrics, the phrase "construct valid-

ity" appears not to be at the forefront of theorists' or practitio-

ners' minds.

Fenton and Melton point to a different structure in which

these questions are asked:

We can use measurement theory to answer the following types of

questions.

1) How much do we need to know about an attribute before it is rea-

sonable to consider measuring it? For example, do we know

enough about complexity of programs to be able to measure it?

2) How do we know if we have really measured the attribute we

wanted to measure? For example, how does a count of the number

of bugs found in a system during integration testing measure the

reliability of the system? If not, what does it measure? . . .

The framework for answering the first two questions is provided by

the representation condition for measurement. [17, p. 29-30]

The representational theory is laid out generally in [6] [10]

[11] and harshly critiqued by Michell [18]. Applied to com-

puting measurement, it is nicely summarized by Fenton and

Melton [17] and presented in detail by Fenton and Pfleeger

[7], Morasca and Briand [13] and Zuse [12].

We agree with this way of understanding measurement, but

our experience with graduate and undergraduate students in

our Software Metrics courses, and with practitioners that we

have worked with, taught, or consulted to, is that the theory is

profound, deep, intimidating, and not widely enough used in

practice.

The following approach simplifies and highlights many of

what we think are the key issues of practical measurement.

3.1 Defining Measurement

Suppose that while teaching a class, you use the following rule

to assign grades to students—the closer the student sits to your

lectern, the higher her grade. Students who sit front and center

get A's (100); those who hide in the far rear corner flunk (0).

Intermediate students get grades proportional to distance.

Does this grading scheme describe a measurement?

If we accept Stevens' definition of measurement ("assign-

ment of numbers to objects or events according to rule") as

literally correct, then this grading rule does qualify as a meas-

urement.

Intuitively, however, the rule is unsatisfactory. We assign

grades to reflect the quality student performance in the course,

but this rule does not systematically tie the grade (the meas-

urement) to the quality of performance. Several definitions of

measurement, such as Fenton and Pfleeger's ("process by

which numbers or symbols are assigned to attributes of enti-

ties in the real world in such a way as to characterize them

according to clearly defined rules") address this problem by

explicitly saying that the measurement is done to describe or

characterize an attribute.

What is the nature of the rule(s) that govern the assign-

ments? This question is at the heart of the controversy be-

tween representational theory and traditional (physics-

oriented) theory of measurement [18]. Under the traditional

view, the numbers are "assigned according to natural laws"

[9]. That is, the rule is based in a theory or model, and (in the

traditionalist case) that model derives from natural laws. The

ideal model is causal—a change in the attribute causes a

change in the value that will result from a measurement.

Many current discussions of metrics exclude or gloss over

the notion of an underlying model. IEEE 1061 refers to corre-

lation as a means of validating a measure, but this is a weak

and risk-prone substitute for a causal model [7].

For many variables, we don't yet understand causal rela-

tionships, and so it would be impossible to discuss measure-

ments of those variables in causal terms. Even for those, how-

ever, we have notions that can be clarified and made explicit.

Accordingly, we adopt the following definition of meas-

urement:

Measurement is the empirical, objective assignment

of numbers, according to a rule derived from a

model or theory, to attributes of objects or events

with the intent of describing them.

3.2 The Evaluation Framework

To evaluate a proposed metric, including one that we propose,

we find it useful to ask the following ten questions:

1) What is the purpose of this measure? Examples of pur-

poses include:

•  facilitating private self-assessment and improvement.

[19]

• evaluating project status (to facilitate management of the

project or related projects)

• evaluating staff performance

•  informing others (e.g. potential customers) about the

characteristics (such as development status or behavior)
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of the product

•  informing external authorities (e.g. regulators or litiga-

tors) about the characteristics of the product

The higher the stakes associated with a measurement, the

more important the validation. A measure used among

friends for personal coaching might be valuable even if it is

imprecise and indirect.

2) What is the scope of this measure? A few examples of

scope:

• a single method from one person

• one project done by one workgroup

• a year's work from that workgroup

• the entire company's output (including remote locations)

for the last decade

As the scope broadens, more confounding variables can

come into play, potentially impacting or invalidating the

metric. A metric that works well locally might fail globally.

3) What attribute are we trying to measure? If you only

have a fuzzy idea of what you are trying to measure, your

measure will probably bear only a fuzzy relationship to

whatever you had in mind.

Measurement presupposes something to be measured. Both in the his-

torical development and logical structure of scientific knowledge, the

formulation of a theoretical concept or construct, which defines a

quality, precedes the development of measurement procedures and

scales.

Thus the concept of 'degree of hotness' as a theoretical construct, in-

terpreting the multitude of phenomena involving warmth, is necessary

before one can conceive and construct a thermometer. Hardness must,

similarly, first be clearly defined as the resistance of solids to local de-

formation, before we seek to establish a scale for measurement. The

search for measuring some such conceptual entity as 'managerial effi-

ciency' must fail until the concept is clarified. . . .

One of the principal problems of scientific method is to ensure that the

scale of measurement established for a quality yields measures, which

in all contexts describe the entity in a manner which corresponds to the

underlying concept of the quality. For example, measures of intelli-

gence must not disagree with our basic qualitative concept of intelli-

gence. It is usual that once a scale of measurement is established for a

quality, the concept of the quality, the concept of the quality is altered

to coincide with the scale of measurement. The danger is that the

adoption in science of a well defined and restricted meaning for a

quality like intelligence, may deprive us of useful insight which the

common natural language use of the word gives us. [6, p. 10-12]. (For

an important additional discussion, see Hempel [20].)

4) What is the natural scale of the attribute we are trying

to measure? We can measure length on a ratio scale, but

what type of scale makes sense for programmer skill, or

thoroughness of testing, or size of a program? See [4] and

[7] for discussions of scales of measurement.

5) What is the natural variability of the attribute? If we

measure two supposedly identical tables, their lengths are

probably slightly different. Similarly, a person's weight

varies a little bit from day to day. What are the inherent

sources and degrees of variation of the attribute we are

trying to measure?

6) What is the metric (the function that assigns a value to

the attribute)? What measuring instrument do we use

to perform the measurement? For the attribute length, we

can use a ruler (the instrument) and read the number from

it. Here are a few other examples of instruments:

•  Counting (by a human or by a machine). For example,

count bugs, reported hours, branches, and lines of code.

•  Matching (by a human, an algorithm or some other de-

vice). For example, a person might estimate the diffi-

culty or complexity of a product by matching it to one of

several products already completed. ("In my judgment,

this one is just like that one.")

•  Comparing (by a human, an algorithm or some other

device). For example, a person might say that one speci-

fication item is more clearly written than another.

• Timing (by computer, by stopwatch, or by some external

automated device, or by calculating a difference be-

tween two timestamps). For example, measure the time

until a specified event (time to first failure), time be-

tween events, or time required to complete a task.

A metric might be expressed as a formula involving more

than one variable, such as Defect Removal Efficiency,

(DRE) which is often computed as the ratio of defects

found during development to total defects (including ones

found in the field). Pfanzagl makes a point about these

measures, with which we agree:

The author doubts whether it is reasonable to consider "derived meas-

urement" as measurement at all. Of course, we can consider any

meaningful function as a scale for a property which is defined by this

scale [density]. On the other hand, if the property allegedly measured

by this derived scale has an empirical meaning by its own, it would

also have its own fundamental scale. The function used to define the

derived scale then becomes an empirical law stating the relation be-

tween fundamental scales. [10, p. 31]

We can assign a number to DRE by calculating the ratio,

but we could measure it in other ways too. For example, a

customer service manager might have enough experience

with several workgroups to rank (compare) their defect re-

moval efficiencies, without even thinking about any ratios.

7) What is the natural scale for this metric? [7]. The scale

of the underlying attribute can differ from the scale of the

metric. For example, we're not sure what the natural scale

would be for "thoroughness of testing," but suppose we

measured thoroughness by giving an expert access to the

testing artifacts of several programs  and then asked the ex-

pert to compare the testing efforts and rank them from least

thorough to most thorough. No matter what the attribute's

underlying scale, the metric's scale is ordinal.

8) What is the natural variability of readings from this

instrument? This is normally studied in terms of “meas-

urement error.”
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9) What is the relationship of the attribute to the metric

value? This is the construct validity question. How do we

know that this metric measures that attribute?

A different way to ask this question is: What model relates

the value of the attribute to the value of the metric? If

the value of the attribute increases by 20%, why should we

expect the measured value to increase and by how much?

10)  What are the natural and foreseeable side effects of

using this instrument? If we change our circumstances or

behavior in order to improve the measured result, what im-

pact are we going to have on the attribute? Will a 20% in-

crease in our measurement imply a 20% improvement in

the underlying attribute? Austin [2] provides several exam-

ples in which the work group changed its behavior in a way

that optimized a measured result but without improving the

underlying attribute at all. Sometimes, the measured result

looked better, while the underlying performance that was

allegedly being measured was actually worse. Hoffman

[21] described several specific side effects that he saw

while consulting to software companies.

•  A measurement system yields distortion if it creates in-

centives for the employee to allocate his time so as to

make the measurements look better rather than to opti-

mize for achieving the organization's actual goals for his

work.

•  The system is dysfunctional if optimizing for measure-

ment so distorts the employee's behavior that he pro-

vides less value to the organization than he would have

provided in the absence of measurement. [2]

3.3 Applying the Evaluation Framework

We have room in this article to illustrate the application of the

framework to one metric. We chose bug counts because they

are ubiquitous. For example, in Mad About Measurement,

Tom DeMarco says: "I can only think of one metric that is

worth collecting now and forever: defect count." [19, p. 15]

Despite its popularity, there are serious problems with many

(not all) of the uses of bug counts. Let's take a look.

1) What is the purpose of this measure? Bug counts have

been used for a variety of purposes, including:

•  Private, personal discovery by programmers of patterns

in the mistakes they make. [22]

•  Evaluation (by managers) of the work of testers (better

testers allegedly find more bugs) and programmers

(better programmers allegedly make fewer bugs).[23]

•  Evaluation of product status and prediction of release

date. [24]  [25]

• Estimation of reliability of the product. [26]

2) What is the scope of this measure? Bug statistics have

been used within and across projects and workgroups.

3) What attribute are we trying to measure? In the field,

we've seen bug counts used as surrogates for quality of the

product, effectiveness of testing, thoroughness of testing,

effectiveness of the tester, skill or diligence of the pro-

grammer, reliability of the product, status of the project,

readiness for release, effectiveness of a given test tech-

nique, customer satisfaction, even (in litigation) the negli-

gence or lack of integrity of the development company.

In this paper, we narrow the discussion to two attributes,

that are popularly "measured" with bug counts.

•  Quality (skill, effectiveness, efficiency, productivity,

diligence, courage, credibility) of the tester. We are

trying to measure how "good" this tester is. The notion

underlying the bug-count metric is that better testers find

more bugs. Some companies attach significant weights

to bug counts, awarding bonuses on the basis of them or

weighting them heavily in discussions of promotions or

raises. However, when we think in terms of defining the

attribute, we ignore the proposed metric and keep our

focus on what we know about the attribute.  One way to

think about the attribute is to list adjectives that feel like

components or dimensions of it. Some of the aspects of

"goodness" of a tester employee are

•  Skill—how well she does the tasks that she does. If

we think of bug-hunting skill, we might consider

whether the bugs found required particularly creative

or technically challenging efforts),

• Effectiveness—the extent to which the tester achieves

the objective of the work. For example, "The best

tester isn't the one who finds the most bugs or who

embarrasses the most programmers. The best tester is

the one who gets the most bugs fixed." [27, p. 15]

•  Efficiency—how well the tester uses time. Achieve-

ment of results with a minimum waste of time and ef-

fort.

•  Productivity—how much the tester delivers per unit

time. The distinction that one can draw between effi-

ciency and productivity is that efficiency refers to the

way the person does the job whereas productivity re-

fers to what she gets done. For example, a tester who

works on a portion of the code that contains no de-

fects can work through the tests efficiently but pro-

duce no bug reports.

•  Diligence—how carefully and how hard the tester

does her work.

• Courage—willing to attempt difficult and risky tasks;

willing to honestly report findings that key

stakeholders would prefer to see suppressed.

•  Credibility—the extent to which others trust the re-

ports and commitments of this tester.

A different way to think about the attribute is to consider

the services that the tester provides, and then evaluate

the quality of performance of each service. Thinking this

way, testers provide test automation design and coding,

test project planning, test case design and documenta-

tion, coaching customer support staff, technical accuracy

editing of documentation, status reporting, configuration

management (of test artifacts, and often of the entire

project's artifacts), laboratory design and workflow

management (this is critical if the product must be tested

on many configurations), specification analysis, in-
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specting code, and, of course, hunting bugs and persua-

sively reporting the bugs that are found. Some testers

provide all of their value to the project by enabling oth-

ers to find bugs rather than finding bugs themselves.

•  Status of the project and readiness for release. One of

the key release criteria for a project is an acceptably low

count of significant, unfixed bugs. It is common, over

the course of the project, for testers to find a few bugs at

the start (while they're getting oriented), then lots of

bugs, then fewer and fewer as the program stabilizes.

The pattern is common enough that bug curves—graphs

showing how many new bugs were found week by

week, or how many bugs are unresolved week by week,

or some other weekly variant—are in common use in the

field.

As with quality of the tester, however, when we are de-

fining the attribute, the hypotheses about how to meas-

ure it are—for the moment—irrelevant. Once we have a

better idea of what it is that we are trying to measure, we

can look again at the proposed metric to assess the ex-

tent to which the metric covers the attribute.

A project is complete enough to release when it provides

enough of the features, delivers enough of the benefits

(the features have to work well enough together for the

user to actually succeed in using the product to get real

work done), is documented well enough for the user,

validated well enough for regulators or other

stakeholders (e.g. litigators of the future) who have a le-

gitimate interest in the validation, has been sufficiently

instrumented, documented, and troubleshot to be ready

for field or phone support, is sufficiently ready for

maintenance, localization or porting to the next envi-

ronment (readiness might include having maintainability

features in the code as well as effective version control

and other maintainability-enhancing development proc-

esses in place), is acceptable to the key stakeholders,

and has few enough bugs. This list is not exhaustive, but

it illustrates the multidimensionality of the release deci-

sion. Many companies appraise status and make release

decisions in the context of project team meetings, with

representatives of all of the different workgroups in-

volved in the project. They wouldn't need these team

meetings if the status and release information were one-

dimensional (bug counts). We describe these dimensions

in the language of "good enough" because projects differ

in their fluidity. One organization might insist on coding

everything agreed to in a requirements specification but

do little or nothing to enable later modification. Another

might emphasize high reliability and be willing to re-

lease a product with fewer than the desired number of

features so long as the ones that are included all work

well. Even if we restrict our focus to bugs, the critical

question is not how many bugs are in the product, nor

how many bugs can be found in testing but is instead

how reliable the product will be in the field [15], for ex-

ample how many bugs will be encountered in the field,

how often, by how many people, and how costly they

will be.

4) What is the natural scale of the attribute we are trying

to measure? We have no knowledge of the natural scales

of either of these attributes.

5) What is the natural variability of the attribute? We have

no knowledge of the variability, but there is variability in

anything that involves human performance.

6) What is the metric (the function that assigns a value to

the attribute)? What measuring instrument do we use to

perform the measurement?

•  Quality (skill, effectiveness, efficiency, productivity) of

the tester. The proposed metric is some variation of bug

count. We might adjust the counts by weighting more

serious bugs more heavily. We might report this number

as bugs per unit time (such as bugs per week or per

month). Whatever the variation, the idea is that more

bugs indicate better testing (and fewer bugs indicate

worse testing).

•  Status of the project and readiness for release. The

metric is typically expressed as a curve or table that

shows bug counts per unit time (typically bugs per

week). The "bug counts" might include all open (not-

yet-fixed) bugs or only bugs found this week. The

counts might be filtered to exclude trivial problems or

suggestions that are clearly intended to be confronted in

the next release, not this one. One challenging question

is whether some bugs are weaker indicators than others.

A bug that will take 5 minutes to fix has a very different

impact on project status than one that will require a

week of troubleshooting and experimentation.

7) What is the natural scale for this metric? In both cases,

we're counting something. That suggests that the scale is

interval or ratio. But before we can agree that the scale is

one of those, we have to apply some acid tests:

• Ratio scale. Bug count is a ratio-scaled measure of tester

quality if double the bug count implies that the tester is

twice as good.

•  Interval scale. Suppose that W, X, Y, and Z are four

testers, who found N(W) < N(X) < N(Y) < N(Z) bugs.

Bug count is an interval-scaled measure of tester quality

if the equality: (N(Z)-N(Y) = N(X)-N(W)) implies that

Z is as much better a tester than Y as X is better than W,

for all bug counts. This if Z found 1000 bugs and Y

found 950, Z is as much better than Y as X (who found

51 bugs) is than W (who found 1).

If neither of these relationships holds, then, as a measure of

tester quality, bug counts must be ordinal measures.

8) What is the natural variability of readings from this

instrument? Counting bugs is not perfectly deterministic.

Bugs are dropped from the count for many reasons, such as

being a duplicate of another report, or reflecting a user er-

ror, or not serious enough to pass an agreed threshold. Hu-

mans make these decisions, and different humans will

sometimes make different decisions. This is an example of

a source of variation of the bug counts. There are undoubt-
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edly other sources of variation.

9) What is the relationship of the attribute to the metric

value? Now that we have more clearly described the at-

tributes we're trying to measure, we're in a better position

to ask whether or to what degree the metric actually meas-

ures the attribute. It seems self-evident that these are surro-

gate measures.

"Many of the attributes we wish to study do not have generally agreed

methods of measurement. To overcome the lack of a measure for an

attribute, some factor which can be measured is used instead. This al-

ternate measure is presumed to be related to the actual attribute with

which the study is concerned. These alternate measures are called sur-

rogate measures." [28]

Surrogate measures provide unambiguous assignments of

numbers according to rules, but they don’t provide an un-

derlying theory or model that relates the measure to the at-

tribute allegedly being measured.

Interestingly, models have been proposed to tie bug curves

to project status. We will focus on one model, recently

summarized lucidly by Erik Simmons. [24] Simmons re-

ports successful applications of this model at Intel [24]

[29], and references his work back to Lyu. In sum, Sim-

mons plots the time of reporting of medium and high se-

verity bugs, fits the curve to a Weibull distribution and es-

timates its two parameters, the shape parameter and the

characteristic life. From characteristic life, he predicts the

total duration of the testing phase of the project.

Even though the curve-fitting and estimation appear suc-

cessful, it is important to assess the assumptions of the

model. An invalid model predicts nothing. According to

Simmons, the following assumptions underlie the model:

1.  The rate of defect detection is proportional to the current

defect content of the software.

2.  The rate of defect detection remains constant over the inter-

vals between defect arrivals.

3.  Defects are corrected instantaneously, without introducing

additional defects.

4.  Testing occurs in a way that is similar to the way the soft-

ware will be operated.

5.  All defects are equally likely to be encountered.

6. All defects are independent.

7.  There is a fixed, finite number of defects in the software at

the start of testing.

8. The time to arrival of a defect follows a Weibull distribution.

9. The number of defects detected in a testing interval is inde-

pendent of the number detected in other testing intervals for

any finite collection of intervals.

These assumptions are often violated in the realm of software testing.

Despite such violations, the robustness of the Weibull distribution al-

lows good results to be obtained under most circumstances." [24, p. 4]

These assumptions are not just "often violated." They are

blatently incorrect:

•  Detection rate proportional to current defect content:

Some bugs are inherently harder to expose than others.

For example, memory leaks, other memory corruption,

or timing faults might require long testing sequences to

expose. [30] Additionally, it is common practice for test

groups to change test techniques as the program gets

more stable, moving from simple tests of one variable to

complex tests that involve many variables. [31, 32]

• Rate of defect detection remains constant. Whenever we

change test techniques, introduce new staff, or focus on

a new part of the program or a new risk, the defect de-

tection rate is likely to change.

•  Instant, correct defect correction. If this was true, no

one would do regression testing and automated regres-

sion test tools wouldn't be so enormously popular.

• Test similar to use. This reflects one approach to testing,

testing according to the operational profile. [15] How-

ever, many test groups reject this philosophy, prefering

to test the program harshly, with tests intended to expose

defects rather than with tests intended to simulate nor-

mal use. The most popular mainstream test technique,

domain testing, uses extreme (rather than representative)

values. [33] Risk-based testing also hammers the pro-

gram at anticipated vulnerabilities, without reference to

operational profile. [34]

• All defects equally likely to be encountered. This is fun-

damentally implausible. Some bugs crash the program

when you boot it or corrupt the display of the opening

screen. Other bugs, such as wild pointer errors and race

conditions, are often subtle, hard to expose, and hard to

replicate.

•  All defects are independent. Bugs often mask other

bugs.

•  Fixed, finite number of defects in the software at the

start of testing. There is a trivial sense in which these

words are true. If we fix any point in time and identify

all of the code in a product, that codebase must have, for

that moment, a fixed total number of bugs. However, the

meaning behing the words is the assertion that the totla

stays fixed after the start of testing. That is, bug fixes

could introduce no new bugs. No new code could be

added to the product after the start of testing or all of it

would be perfect. Requirements would never change

after the start of testing and changed external circum-

stances would never render any previously good code

incompatible or incomplete. We have never seen a pro-

ject for which this was close to true.

•  Time to arrival follows a Weibull distribution. There is

nothing theoretically impossible about this, but the as-

sumptions that provided a rationale for deriving a

Weibull process (listed above) have failed, so it might be

surprising if the distribution were Weibull.

•  Number of defects detected in one interval independent

of number detected in others. Again, the rate of detec-

tion depends on other variables such as selection of test

technique or introduction of new testers or the timing of

vacations and corporate reorganizations.

These assumptions are not merely sometimes violated.

They individually and collectively fail to describe what

happens in software testing. The Weibull distribution is

right-skewed (more bugs get found early than near the ship
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date) and unimodal, and that pattern might be common in

testing, but there are plenty of right-skew distributions, and

they arise from plenty of different causes. The Weibull dis-

tribution is not a plausible model of project status or project

testing phase duration.

10)  What are the natural and foreseeable side effects of

using this instrument? People are good at tailoring their

behavior to things that they are measured against. [35] If

we want more bugs, we can get more bugs. If we want a

nice, right-skew curve, we can get that curve. But the pretty

new numbers doesn't necessarily imply that we'll get the

improvements in the underlying attribute that we're looking

for. The less tightly linked a measure is to the underlying

attribute, the more we expect to see distortion and disfunc-

tion when the measure is used. [2]

•  Quality (skill, effectiveness, efficiency, productivity) of

the tester. Measuring testers by their bug count will en-

courage them to report more bugs.

•  This creates incentives for superficial testing (test

cases that are quick and easy to create) and against

deep tests for serious underlying errors. Bug counting

punishes testers who take the time to look for the

harder-to-find but more important bugs.

• The system creates disincentives for supporting other

testers. It takes time to coach another tester, to audit

his work, or to help him build a tool that will make

him more effective, time that is no longer available

for the helper-tester to use to find bugs.

•  More generally, emphasizing bug counts penalizes

testers for writing test documentation, researching the

bugs they find to make more effective bug reports, or

following any process that doesn't yield more bugs

quickly.

•  The system also creates political problems. A man-

ager can make a tester look brilliant by assigning a

target-rich area for testing. Similarly, a manager can

set up a disfavored tester for firing by having him test

stable areas or areas that require substantial setup

time per test. As another political issue, programmers

will know that testers are under pressure to maximize

their bug counts, and may respond cynically to bug

reports, dismissing them as chaff filed to increase the

bug count rather than good faith reports. Hoffman

[21] provides further illustrations of political bug

count side effects.

Problems like these have caused several measurement

advocates to warn against measurement of attributes of

individuals (e.g., [36]) unless the measurement is being

done for the benefit of the individual (for genuine

coaching or for discovery of trends) and otherwise kept

private (e.g. [19] [22]). Often, people advocate using

aggregate counts--but any time you count the output of a

group and call that "productivity", you are making a per-

sonal measurement of the performance of the group's

manager.

• Status of the project and readiness for release. We can

expect the following problems (side effects) from reli-

ance on bug curves. Some of these were reported by

Hoffman [21]. Kaner has seen most of these at client

sites.

•  Early in testing, the pressure is to build up the bug

count. If we hit an early peak, the model says we'll

finish sooner. One way to build volume is to run

every test onhand,  even tests of features that are al-

ready known to be broken or incomplete. Each

seemingly-new way the program fails is good for an-

other bug report. Another way to build volume is to

chase variants of bugs—on finding a bug, create sev-

eral related tests to find more failures. Some follow-

up testing is useful, but there's a point at which it's

time to pass the reports to the programmers and let

them clear out the underlying fault(s) before looking

for yet more implications of what is likely the same

fault. In general, testers will look for easy bugs in

high quantities and will put less emphasis on auto-

mation architecture, tool development, test docu-

mentation, or other infrastructure development. This

has a dual payoff. The testers find lots of bugs over

the immediate term, when they are under pressure to

find lots of bugs, and they don't build support for a

sustained attack on the product, so later, when the

easiest bugs are out of the system, the bug find rate

will plummet just like the model says it should.

•  Later in testing, the expectation is that the bug find

rate will decline. Testers have permission to find

fewer bugs, and they may run into a lot of upset if

they sustain a solid bug-find rate late in the project.

As a result, they're less likely to look for new bugs.

Instead, they can rerun lots of already-run regression

tests—tests that the program has passed time and

again and will probably pass time and again in the

future. [37] Later in the project, testers can spent lots

of time writing status reports, customer support

manuals, and other documents that offer value to the

company—but not bugs. Programmers and project

managers under pressure to keep up with the bug

curve have also aggressively managed the bug data-

base by closing lightly-related bugs as duplicates,

rejecting a higher portion of bugs as user errors or

design requests, closing hard-to-reproduce bugs as ir-

reproducible rather than making an effort to replicate

them, or finding ways to distract the testers (such as

sending them to training sessions or even to the

movies!) In some companies, the testers and the pro-

grammers hold the "quality assurance" metrics-

gathering staff in contempt and they collaborate to

give the QA outsiders the numbers they want in order

to get them to go back to Head Office, far away. This

includes slowing down testing before major mile-

stones (so that the milestones, which are defined par-

tially in terms of the predicted bug cure, can be re-

corded as met) and reporting bugs informally and not

entering them into the bug tracking system until the

programmer is ready to enter a fix. At one client site,

the staff even had a cubicle where they would write
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bugs up on Post-It notes, posting them on the inside

wall until a bug was fixed or the numbers in the

tracking system were low enough to admit more new

bugs. This system worked fairly well except when

Post-Its fell off the wall at night and were swept

away by the janitor.

Rather than accepting the smooth decline in bug find

rate, some test managers treat a drop in the bug count as

a trigger for change. They adopt new test techniques, re-

analyze the product for new risks, focus on less-tested

areas, bring on staff with other skills, and try to push the

bug count back up. Eventually, the testers run out of

good ideas and the new-bugs-found rate drops dramati-

cally. But until then, the testers are fighting against the

idea that they should find fewer bugs, rather than col-

laborating with it.

4 A MORE QUALITATIVE APPROACH TO

QUALITATIVE ATTRIBUTES

Rather than fighting the complexity of software engineering

attributes, it might make sense to embrace them. These notes

are based on work done at two meetings of experienced test

managers (the Software Test Managers' Roundtables), inter-

views by Cem Kaner of test managers, and extensive work by

Kaner and some of his consulting clients on improving the

effectiveness of their bug reporting. The bug reporting notes

have also been refined through use in classroom instruction

[38] and course assignments based on the notes, and in peer

critiques of previous presentations, such as [39]. The test

planning notes are more rough, but an earlier version has been

published and critiqued.[40] We summarize those notes here.

The notion of measuring several related dimensions to get a

more complete and balanced picture is not new. The balanced

scorecard approach [41]  [42] developed as a reaction to the

inherently misleading information and dysfunction resulting

from single-dimensional measurement. We also see multidi-

mensional work done in software engineering, such as [3] and

[43]. What we add here (in this section and in several of the

analyses above) are primarily examples of breakdowns of

some software engineering attributes or tasks into a collection

of related sub-attributes.

Imagine being a test manager and trying to evaluate the

performance of your staff. They do a variety of tasks, such as

bug-hunting, bug reporting, test planning, and test tool devel-

opment. To fully evaluate the work of the tester, you would

evaluate the quality of work on each of the tasks.

Consider the bug reporting task. Take a sample of the re-

ports to evaluate them. Start by skimming a report to form a

first impression of it.

•  Is the summary short (about 50-70 characters) and de-

scriptive?

• Can you understand the report? Do you understand what

the reporter did and what the program did in response?

• Do you understand what the failure was?

• Is it obvious where to start (what state to bring the pro-

gram to) to replicate the bug? What files to use (if any)?

What to type?

•  Is the replication sequence provided as a numbered set

of steps, that state exactly what to do and, when useful,

what you will see?

•  Does the report include unnecessary information, per-

sonal opinions or anecdotes that seem out of place?

• Is the tone of the report insulting? Are any words in the

report potentially insulting?

• Does the report seem too long? Too short? Does it seem

to have a lot of unnecessary steps?

Next, try to replicate the bug.

•  Can you replicate the bug? Did you need additional in-

formation or steps? Did you have to guess about what to

do next?

• Did you get lost or wonder whether you had done a step

correctly? Would additional feedback (like, “the pro-

gram will respond like this...”) have helped?

•  Did you have to change your configuration or environ-

ment in any way that wasn’t specified in the report?

• Did some steps appear unnecessary? Were they unneces-

sary?

• Did the description accurately describe the failure?

• Did the summary accurate describe the failure?

•  Does the description include non-factual information

(such as the tester’s guesses about the underlying fault)

and if so, does this information seem credible and useful

or not?

Finally, make a closing evaluation:

•  Should the tester have done further troubleshooting to

try to narrow the steps in the bug or to determine

whether different conditions would yield worse symp-

toms?

•  Does the description include non-factual information

(such as the tester’s guesses about the underlying fault).

Should it? If it does, does this information seem credible

and useful?

•  Does the description include statements about why this

bug would be important to the customer or to someone

else? Should it? If it does, are the statements credible?

Along with using a list like this for your evaluation, you

can hand it out to your staff as a guide to your standards.

Evaluating test plans is more challenging, especially in a

company that doesn't have detailed test planning standards.

Your first task is to figure out what the tester's standards are.

For example, what is the tester's theory of the objectives of

testing for this project? Once you know that, you can ask

whether the specific plan that you're reviewing describes those

objectives clearly and achieves them. Similarly, we considered

the tester's theory of scope of testing, coverage, risks to man-

age, data (what data should be covered and  in what depth),

originality (extent to which this plan should add new tests to

an existing collection, and why), communication (who will

read the test artifacts and why), usefulness of the test artifacts

(who will use each and for what purposes), completeness (how

much testing and test documentation is good enough?) and

insight (how the plan conveys the underlying ideas). The test

planner has to decide for each of these dimensions how much

is enough—more is not necessarily better.
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In considering these dimensions, we've started experimenting

with rubrics. [44]  [45] A rubric is a table. There's a row for

each dimension (objective, scope, coverage, etc.). There are 3

to 5 columns, running from a column that describes weak per-

formance through a mid-level that describes acceptable but not

spectacular work, through a column that describes excellent

work. By describing your vision of what constitutes excellent,

adequate, and poor work, you give your staff a basis for doing

what you want done.

The basic rubric works excellently when you are in full

control of the standards. However, it is more subtle when you

leave the decisions about standards to the staff and then evalu-

ate their work in terms of their objectives. Opinions vary as to

the extent to which staff should be allowed to set their own

standards, but there is a severe risk of mediocrity if the tester's

(or any skilled professional's) work is micromanaged.

After you have reviewed several bug reports (or test plans)

using the bug reporting checklist (or test plan rubric), you will

form an opinion of the overall quality of work of this type that

a given tester is doing. That will help you rate the work (ordi-

nal scale). For example, you might conclude that the tester is

Excellent at test planning but only Acceptable at bug report

writing.

The set of ratings, across the different types of tasks that

testers do, can provide a clear feedback loop between the

tester and the test manager.

To convey an overall impression of the tester's strength,

you might draw a Kiveat diagram or some other diagram that

conveys the evaluator's reading on each type of task.

We have not seen this type of evaluation fully implemented

and don't know of anyone who has fully implemented it. A

group of test managers has been developing this approach for

their use, and many of them are now experimenting with it, to

the extent that they can in their jobs.

Our intuition is that there are some challenging tradeoffs.

The goal of this approach is not to micromanage the details of

the tester's job, but to help the test manager and the tester un-

derstand which tasks the tester is doing well and which not.

There are usually many ways to do a task well. If the scoring

structure doesn't allow for this diversity, we predict a dysfunc-

tion-due-to-measurement result.

5 CONCLUSION

There are too many simplistic metrics that don't capture

the essence of whatever it is that they are supposed to

measure. There are too many uses of simplistic measures

that don't even recognize what attributes are supposedly

being measured. Starting from a detailed analysis of the

task or attribute under study might lead to more com-

plex, and more qualitative, metrics, but we believe that it

will also leads to more meaningful and therefore more

useful data.
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performance of individual testers. Participants included Bernie

Berger, Ross Collard, Kathy Iberle, Cem Kaner, Nancy Lan-

dau, Erik Petersen, Dave Rabinek, Jennifer Smith-Brock, Sid

Snook, and Neil Thompson.
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