
LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 1

Styles of Exploration

Experienced, skilled explorers develop their own styles.

Here’s a survey of some of the styles we’ve seen.

Cem Kaner & Bob Johnson

LAWST 7

The ideas in this presentation were reviewed and extended

by our colleagues at the 7th Los Altos Workshop on Software

Testing. We appreciate the assistance of the other LAWST 7

attendees: Brian Lawrence, III, Jack Falk, Drew Pritsker, Jim

Bampos, Bob Johnson, Doug Hoffman, Chris Agruss, Dave

Gelperin, Melora Svoboda, Jeff Payne, James Tierney, Hung

Nguyen, Harry Robinson, Elisabeth Hendrickson, Noel

Nyman, Bret Pettichord, & Rodney Wilson.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 2

Styles

When you watch or read different skilled explorers, you see very different approaches. At
the heart of all of the approaches, I think we find questions and questioning skills. (But then,
I’m the guy who defines a test case as a unified or single question that you ask the program,
so maybe I’m biased.) As you consider the styles that follow, think about themes.

 All of the approaches are methodical, but do they focus on the

• Method of questioning?

• Method of describing or analyzing the product?

• The details of the product?

• The patterns of use of the product?

• The environment in which the product is run?

 To what extent would this style benefit from group interaction?

 What skills and knowledge does the style require or assume?

• Programming / debugging

• Knowledge of applications of this type and how they fail

• Knowledge of the use of applications of this type

• Deep knowledge of the software under test

• Knowledge of the system components (h/w or s/w or network) that are the context for the
application

• Long experience with software development projects and their typical problems

• Requirements analysis or problem decomposition techniques

• Mathematics, probability, formal modeling techniques

Query: Are any of these techniques appropriate to novices? Can we train novices in
exploration?

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 3

How it’s done: An Illustration

Johnson & Agruss, Ad Hoc Software Testing: Exploring the Controversy of

Unstructured Testing. STAR'98 WEST

 So, how do you do it? This is a difficult process to describe, because its main virtues are a lack of rigid structure, and the freedom to try
alternative pathways! Also, much of what experienced software testers do is highly intuitive, rather than strictly logical. However, here are a few
tricks and techniques that will help you to do effective ad hoc testing.

 To begin with, we suggest that you target areas that are not already covered very thoroughly by your test designs. In our experience, test
designs are written to cover specific features in the software under test, with relatively little attention paid to the potential interaction between
features. Much of this interaction goes on at the subsystem level, because it supports multiple features (e.g. the graphical subsystem). Imagine some
potential interactions such as these that could go awry in your program, and then set out to test your theory using an ad hoc approach.

 Before embarking on your ad hoc adventure, take out paper and pencil. On the paper, write down what you’re most interested in learning
about the program during this session. Be specific. Note exactly what you plan to achieve during this testing, and how long you are going to spend
doing the work. Then make a short list of what might go wrong and how you would be able to detect the problem.

Next, start the program, and try to exercise the features that you are currently concerned about. Remember that you want to use this time to better
understand the program, so side trips to explore both breadth and depth of the program are very much in order.

 As an example, suppose you want to determine how thoroughly you need to test a program’s garbage collection abilities. From the
documentation given, you will probably be uncertain if any garbage collection is required or exists. Although many programs use some form of
garbage collection, this will seldom be mentioned in any specification. Systematic testing of garbage collection is very time consuming. However,
with one day’s ad hoc testing of most programs, an experienced tester can determine if the program’s garbage collection is ―okay,‖ has ―some
problems,‖ or is ―seriously broken.‖ With this information the Test Manager can determine how much effort to spend in testing this further. We’ve
even seen the development manager withdraw features for review, and call for a rewrite of the code as a result of this knowledge, saving both
testing and debugging time.

 There are hundreds of these low-level housekeeping functions, often re-implemented for each new program, and prone to design and
programmer error. Memory management, sorting, searching, two-phase commit, hashing, saving to disk (include temporary and cache file), menu
navigation, and parsing are just a few examples.

 A good ad hoc tester needs to understand the design goals and requirements for these low-level functions (see suggested reading, below).
What choices did the development team make, and what were the weaknesses of those choices? Ad hoc testing can be done as black box testing.
However, this means the tester must check for all the major design patterns that might have been used. Clear or white box testing allows the tester to
narrow the testing to known problems.

 Read defect reports from many projects, not just from your project. Your defect database doesn’t tell you what kind of mistakes the
developers are making; it tells you what kinds of mistakes you are finding. You want to find new types of problems. Expand your horizon. Read
about problems/defects/weaknesses in the application’s environment. Sources of such problems include the operating system, the language being
used, the specific compiler, the libraries used, and the APIs being called.

 Learn to use debuggers, profilers, and task monitors. In many cases you never see an error in the execution of the program; however, these
tools can flag processes that are out of control. For this reason, among others, you need to use seasoned professionals to get the most out of your ad
hoc testing.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 4

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances

 Interference

 Error Handling

 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 5

Styles of Exploration

 Hunches

• “Random”

• “Perverse view”

• Similarity to previous errors

• Following up gossip and predictions

• Follow up recent changes
 Models

 Examples

 Invariances

 Interference

 Error Handling

 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 6

Random

 People who don’t understand exploratory

testing describe it as ―random testing.‖ They

use phrases like ―random tests‖, ―monkey

tests‖, ―dumb user tests‖. This is probably the

most common characterization of exploratory

testing.

 This describes very little of the type of testing

actually done by skilled exploratory testers.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 7

“Perverse” View

 The ―perverse‖ tester reads (or hears)
specs or other claims about how the
program works and
 intentionally misinterprets them,

 intentionally does the task in an unusual (e.g.
clumsy or indirect) order or

 intentionally interferes with the program’s
ability to fulfill them.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 8

Similarity to Previous Errors

James Bach once described exploratory testers as

mental pack rats who horde memories of every bug they’ve ever seen.

The way they come up with cool new tests is by analogy:

Gee, I saw a program kind of like this before, and it had a bug like this.

How could I test this program to see if it has the same old bug?

 A more formal variation:

 Create a potential bugs list, like the Appendix A of Testing Computer
Software

 Another related type of analogy:

 Sample from another product’s test docs.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 9

Follow Up Gossip And

Predictions

 Sources of gossip:
 directly from programmers, about their own progress or about the

progress / pain of their colleages

 from attending code reviews (for example, at some reviews, the

question is specifically asked in each review meeting, ―What do

you think is the biggest risk in this code?‖)

 from other testers, writers, marketers, etc.

 Sources of predictions
 notes in specs, design documents, etc. that predict problems

 predictions based on the current programmer’s history of certain

types of defects

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 10

Follow Up Recent Changes

 Given a current change

 tests of the feature / change itself

 tests of features that interact with this one

 tests of data that are related to this feature or

data set

 tests of scenarios that use this feature in

complex ways

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 11

Styles of Exploration

 Hunches

 Models

• Architecture diagrams

• Bubble diagrams

• Data relationships

• Procedural relationships

• Model-based testing (state matrix)

• Requirements definition

• Functional relationships (for regression testing)
 Examples

 Invariances

 Interference

 Error Handling

 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 12

Models and Exploration

We usually think of modeling in terms of
preparation for formal testing, but there is no
conflict between modeling and exploration.
Both types of tests start from models. The
difference is that in exploratory testing, our
emphasis is on execution (try it now) and
learning from the results of execution rather
than on documentation and preparation for
later execution.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 13

Architecture Diagrams

 Work from a high level design (map) of the system

 pay primary attention to interfaces between components or groups of
components. We’re looking for cracks that things might have slipped
through

 what can we do to screw things up as we trace the flow of data or the

progress of a task through the system?

 You can build the map in an architectural walkthrough

 Invite several programmers and testers to a meeting. Present the
programmers with use cases and have them draw a diagram showing the
main components and the communication among them. For a while, the
diagram will change significantly with each example. After a few hours, it
will stabilize.

 Take a picture of the diagram, blow it up, laminate it, and you can use dry
erase markers to sketch your current focus.

 Planning of testing from this diagram is often done jointly by several
testers who understand different parts of the system.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 14

Bubble (Reverse State) Diagrams

 To troubleshoot a bug, a programmer will often work the code backwards,
starting with the failure state and reading for the states that could have led to it
(and the states that could have led to those).

 The tester imagines a failure instead, and asks how to produce it.

 Imagine the program being in a failure state. Draw a bubble.

 What would have to have happened to get the program here? Draw a bubble
for each immediate precursor and connect the bubbles to the target state.

 For each precursor bubble, what would have happened to get the program
there? Draw more bubbles.

 More bubbles, etc.

 Now trace through the paths and see what you can do to force the program
down one of them.

 Example:
 How could we produce a paper jam (as a result of defective firmware, rather than as a result of

jamming the paper?) The laser printer feeds a page of paper at a steady pace. Suppose that after
feeding for a while, the system reads a sensor to see if there is anything left in the paper path. In this
case, a failure would result if something was wrong with the hardware or software controlling or
interpreting the paper feeding (rollers, choice of paper origin, paper tray), paper size, clock, or sensor.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 15

Data Relationships

 Pick a data item

 Trace its flow through the system

 What other data items does it interact with?

 What functions use it?

 Look for inconvenient values for other data

items or for the functions, look for ways to

interfere with the function using this data item

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 16

Procedural Relationships

 Pick a task

 Step by step, describe how it is done and how it

is handled in the system (to as much detail as

you know)

 Now look for ways to interfere with it, look for

data values that will push it toward other paths,

look for other tasks that will compete with this

one, etc.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 17

Improvisational Testing

The originating model here is of the test effort, not (explicitly) of the software.

 Another approach to ad hoc testing is to treat it as improvisation on a theme, not unlike

jazz improvisation in the musical world. For example, testers often start with a Test

Design that systematically walks through all the cases to be covered. Similarly, jazz

musicians often start with a musical score or ―lead sheet‖ for the tunes on which they

intend to improvise.

 In this version of the ad hoc approach, the tester is encouraged to take off on tangents

from the original Test Design whenever it seems worthwhile. In other words, the tester

uses the test design but invents variations. This approach combines the strengths of

both structured and unstructured testing: the feature is tested as specified in the test

design, but several variations and tangents are also tested. On this basis, we expect that

the improvisational approach will yield improved coverage.

 Improvisational techniques are also useful when verifying that defects have been fixed.

Rather than simply verifying that the steps to reproduce the defect no longer result in

the error, the improvisational tester can test more deeply ―around‖ the fix, ensuring

that the fix is robust in a more general sense.
Johnson & Agruss, Ad Hoc Software Testing:

Exploring the Controversy of Unstructured Testing

STAR'98 WEST

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 18

Model-Based Testing

Notes from Harry Robinson & James Tierney

By modeling specifications, drawing finite state diagrams of what we thought
was important about the specs, or just looking at the application or the API,
we can find orders of magnitude more bugs than traditional tests.

Example, they spent 5 hours looking at the API list, found 3-4 bugs, then
spent 2 days making a model and found 272 bugs. The point is that you can
make a model that is too big to carry in your head. Modeling shows
inconsistencies and illogicalities.

Look at

 all the possible inputs the software can receive, then

 all the operational modes, (something in the software that makes it work
differently if you apply the same input)

 all the actions that the software can take.

 Do the cross product of those to create state diagrams so that you can see and
look at the whole model.

 Use to do this with dozens and hundreds of states, Harry has a technique to
do thousands of states.

 www.geocities.com/model_based_testing

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 19

Using a Model of the Requirements

to Drive Test Design

Notes from Melora Svoboda

 Requirements model based on Gause / Weinberg. Developing a mind map of requirements, you can
find missing requirements before you see code.

 Business requirements
 Issues

 Assumptions

 Choices

 <<<< the actual problem >>>

 Customer Problem Definition
 USERS (nouns)

 favored

 disfavored

 ignored

 ATTRIBUTES (adjectives)

• defining

• optimizing

 FUNCTIONS (verbs)

• hidden

• evident

 The goal is to test the assumptions around this stuff, and discover an inventory of hidden functions.

 Comment: This looks to me (Kaner) like another strategy for developing a relatively standard series
of questions that fall out of a small group of categories of analysis, much like the Satisfice model. Not
everyone finds the Satisfice model intuitive. If you don’t, this mind be a usefully different starting
point.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 20

Data Relationship Chart

Field Entry

Source

Display Print Related

Variable

 Relationship

Variable 1 Any way you

can change

values in V1

After V1 & V2

are brought to

incompatible

values, what

are all the

ways to display

them?

After V1 & V2

are brought to

incompatible

values, what

are all the ways

to display or

use them?

Variable 2 Constraint to a

range

Variable 2 Any way you

can change

values in V1

 Variable 1 Constraint to a

range

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 21

Functional Relationships

(More notes from Melora)

A model (what you can do to establish a strategy) for
deciding how to decide what to regression test after a change:

1. Map program structure to functions.

 This is (or would be most efficiently done as) a glass box task.
Learn the internal structure of the program well enough to
understand where each function (or source of functionality) fits.

2. Map functions to behavioral areas (expected behaviors)

 The program misbehaved and a function or functions were
changed. What other behaviors (visible actions or options of the
program) are influenced by the functions that were changed?

3. Map impact of behaviors on the data

 When a given program behavior is changed, how does the
change influence visible data, calculations, contents of data
files, program options, or anything else that is seen, heard, sent,
or stored?

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 22

Styles of Exploration

 Hunches

 Models

 Examples

• Use cases

• Simple walkthroughs

• Positive testing

• Scenarios

• Soap operas
 Invariances

 Interference

 Error Handling

 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 23

Use Cases

 List the users of the system

 For each user, think through the tasks they want

to do

 Create test cases to reflect their simple and

complex uses of the system

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 24

Simple Walkthroughs

 Test the program broadly, but not

deeply.

 Walk through the program, step by step, feature

by feature.

 Look at what’s there.

 Feed the program simple, nonthreatening

inputs.

 Watch the flow of control, the displays, etc.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 25

Positive Testing

 Try to get the program working in the way that
the programmers intended it.

 One of the points of this testing is that you
educate yourself about the program. You are
looking at it and learning about it from a
sympathetic viewpoint, using it in a way that
will show you what the value of the program is.

 This is true “positive” testing—you are trying
to make the program show itself off, not just
trying to confirm that all the features and
functions are there and kind of sort of working.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 26

Scenarios

 The ideal scenario has several
characteristics:
 It is realistic (e.g. it comes from actual customer or

competitor situations).

 There is no ambiguity about whether a test passed or
failed.

 The test is complex, that is, it uses several features and
functions.

 There is a stakeholder who will make a fuss if the
program doesn’t pass this scenario.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 27

Scenarios

Some ways to trigger thinking about scenarios:

 Benefits-driven: People want to achieve X. How will they do it, for the following

X’s?

 Sequence-driven: People (or the system) typically does task X in an order. What

are the most common orders (sequences) of subtasks in achieving X?

 Transaction-driven: We are trying to complete a specific transaction, such as

opening a bank account or sending a message. What are all the steps, data items, outputs and
displays, etc.?

 Get use ideas from competing product: Their docs, advertisements,

help, etc., all suggest best or most interesting uses of their products. How would our product do
these things?

 Competitor’s output driven: Hey, look at these cool documents they can

make. Look (think of Netscape’s superb handling of often screwy HTML code) at how well
they display things. How do we do with these?

 Customer’s forms driven: Here are the forms the customer produces in her

business. How can we work with (read, fill out, display, verify, whatever) them?

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 28

Soap Operas

 Build a scenario based on real-life experience. This means client/customer

experience.

 Exaggerate each aspect of it:

• example, for each variable, substitute a more extreme value

• example, if a scenario can include a repeating element, repeat it lots of

times

• make the environment less hospitable to the case (increase or decrease

memory, printer resolution, video resolution, etc.)

 Create a real-life story that combines all of the elements into a test case

narrative.

(Thanks to Hans Buwalda for developing this approach and patiently explaining it to me.)

(As these have evolved, Hans distinguishes between normal soap operas, which combine many issues

based on user requirements–typically derived from meetings with the user community and probably don’t

exaggerate beyond normal use—and killer soap operas, which combine and exaggerate to produce

extreme cases.)

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 29

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances
 Interference

 Error Handling

 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 30

Invariances

These are tests run by making changes that shouldn’t
affect the program. Examples:
 load fonts into a printer in different orders

 set up a page by sending text to the printer and then the drawn objects or
by sending the drawn objects and then the text

 use a large file, in a program that should be able to handle any size input
file (and see if the program processes it in the same way)

 mathematical operations in different but equivalent orders

 ===============
John Musa — Intro to his book, Reliable Software Engineering, says that you
should use different values within an equivalance class. For example, if you
are testing a flight reservation system for two US cities, vary the cities. They
shouldn’t matter, but sometimes they do.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 31

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances

 Interference

• Interrupt

• Change

• Stop

• Pause

• Swap

• Compete
 Error Handling

 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 32

Interference Testing

 We’re often looking at asynchronous events here. One task is
underway, and we do something to interfere with it.

 In many cases, the critical event is extremely time sensitive. For
example:

 An event reaches a process just as, just before, or just after it is timing out
or just as (before / during / after) another process that communicates with
it will time out listening to this process for a response. (―Just as?‖—if
special code is executed in order to accomplish the handling of the
timeout, ―just as‖ means during execution of that code)

 An event reaches a process just as, just before, or just after it is servicing
some other event.

 An event reaches a process just as, just before, or just after a resource
needed to accomplish servicing the event becomes available or
unavailable.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 33

Interrupt

 Generate interrupts

 from a device related to the task (e.g. pull out a paper

tray, perhaps one that isn’t in use while the printer is

printing)

 from a device unrelated to the task (e.g. move the

mouse and click while the printer is printing)

 from a software event

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 34

Change

 Change something that this task depends on

 swap out a floppy

 change the contents of a file that this program is

reading

 change the printer that the program will print to

(without signaling a new driver)

 change the video resolution

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 35

Stop

 Cancel the task (at different points during its
completion)

 Cancel some other task while this task is
running

• a task that is in communication with this task (the
core task being studied)

• a task that will eventually have to complete as a
prerequisite to completion of this task

• a task that is totally unrelated to this task

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 36

Pause

 Find some way to create a temporary interruption in the

task.

 Pause the task

• for a short time

• for a long time (long enough for a timeout, if one will arise)

 Put the printer on local

 Put a database under use by a competing program, lock

a record so that it can’t be accessed — yet.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 37

Swap (out of memory)

 Swap the process out of memory while it is running (e.g. change
focus to another application and keep loading or adding applications
until the application under test is paged to disk.

• Leave it swapped out for 10 minutes or whatever the timeout period is.
Does it come back? What is its state? What is the state of processes that
are supposed to interact with it?

• Leave it swapped out much longer than the timeout period. Can you get it
to the point where it is supposed to time out, then send a message that is
supposed to be received by the swapped-out process, then time out on the
time allocated for the message? What are the resulting state of this
process and the one(s) that tried to communicate with it?

 Swap a related process out of memory while the process under test is
running.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 38

Compete

Examples:
 Compete for a device (such as a printer)

 put device in use, then try to use it from software under test

 start using device, then use it from other software

 If there is a priority system for device access, use software
that has higher, same and lower priority access to the device
before and during attempted use by software under test

 Compete for processor attention

 some other process generates an interrupt (e.g. ring into the
modem, or a time-alarm in your contact manager)

 try to do something during heavy disk access by another
process

 Send this process another job while one is underway

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 39

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances

 Interference

Error Handling
 Troubleshooting

 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 40

Error Handling

 The usual suspects:

 Walk through the error list.

• Press the wrong keys at the error dialog.

• Make the error several times in a row (do the equivalent kind

of probing to defect follow-up testing).

 Device-related errors (like disk full, printer not ready, etc.)

 Data-input errors (corrupt file, missing data, wrong data)

 Stress / volume (huge files, too many files, tasks, devices, fields,

records, etc.)

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 41

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances

 Interference

 Error Handling

Troubleshooting
 Group Insights

 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 42

Troubleshooting

 We often do exploratory tests when we
troubleshoot bugs:
 Bug analysis:

• simplify the bug by deleting or simplifying steps

• simplify the bug by simplifying the configuration (or the tools in the
background)

• clarify the bug by running variations to see what the problem is

• clarify the bug by identifying the version that it entered the product

• strengthen the bug with follow-up tests (using repetition, related tests,
related data, etc.) to see if the bug left a side effect

• strengthen the bug with tests under a harsher configuration

 Bug regression: vary the steps in the bug report when checking if
the bug was fixed

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 43

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances

 Interference

 Error Handling

 Troubleshooting

 Group Insights

• Brainstormed test lists

• Group discussion of related components

• Fishbone analysis
 Specifications

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 44

Brainstormed Test Lists

 We saw a simple example of this at the
start of the class. You brainstormed a list
of tests for the two-variable, two-digit
problem:
 The group listed a series of cases (test case, why)

 You then examined each case and the class of tests it belonged to,
looking for a more powerful variation of the same test.

 You then ran these tests.

 You can apply this approach
productively to any part of the system.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 45

Group Discussion of

Related Components

 The objective is to test the interaction of two or
more parts of the system.

 The people in the group are very familiar with one
or more of parts. Often, no one person is familiar
with all of the parts of interest, but collectively the
ideal group knows all of them.

 The group looks for data values, timing issues,
sequence issues, competing tasks, etc. that might
screw up the orderly interaction of the components
under study.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 46

Fishbone Analysis

 Fishbone analysis is a traditional failure analysis technique. Given
that the system has shown a specific failure, you work backwards
through precursor states (the various paths that could conceivably
lead to this observed failure state).

 As you walk through, you say that Event A couldn’t have happened
unless Event B or Event C happened. And B couldn’t have happened
unless B1 or B2 happened. And B1 couldn’t have happened unless X
happened, etc.

 While you draw the chart, you look for ways to prove that X
(whatever, a precursor state) could actually have been reached. If you
succeed, you have found one path to the observed failure.

 As an exploratory test tool, you use ―risks‖ instead of failures. You
imagine a possible failure, then walk backwards asking if there is a
way to achieve it. You do this as a group, often with a computer
active so that you can try to get to the states as you go.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 47

Styles of Exploration

 Hunches

 Models

 Examples

 Invariances

 Interference

 Error Handling

 Troubleshooting

 Group Insight

 Specifications

• Active reading -- Tripos

• Active reading -- Ambiguity analysis

• User manual

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 48

Active Reading

 We covered James Bach’s testing model in detail at the
start of this section

 You can use this method to discover faults in a
specification, such as holes, ambiguities, and
contradictions.

 The goal is to constantly question the spec, identifying
statements about product, project and risk, but also
identifying missing details and unrealistic discussions.

 Anything you flag as an issue (or write a question
about), is a candidate for exploratory testing.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 49

Active Reading

(Ambiguity Analysis)

 There are all sorts of sources of ambiguity in software design and
development.

 In the wording or interpretation of specifications or standards

 In the expected response of the program to invalid or unusual input

 In the behavior of undocumented features

 In the conduct and standards of regulators / auditors

 In the customers’ interpretation of their needs and the needs of the
users they represent

 In the definitions of compatibility among 3rd party products

 Whenever there is ambiguity, there is a strong opportunity for a defect
(at least in the eyes of anyone who understands the world differently
from the implementation).

 One interesting workbook: Cecile Spector, Saying One Thing,
Meaning Another.

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 50

User Manual

 Write part of the user manual and check the

program against it as you go. Any writer

will discover bugs this way. An exploratory

tester will discover quite a few this way.

