
Ju ly/Augus t 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
31

The Nature of Use Cases
A use case is a sequence of actions performed by a system,
which combined together produce a result of value to a sys-
tem user. While uses cases are often associated with object-
oriented systems, they apply equally well to most other
types of systems.

Each use case has pre-conditions which need to be met
for the use case to work successfully. For example, a with-
drawal cannot be made without an open bank account and
without a working automated teller machine (ATM).

Each use case terminates with post-conditions, which
are the observable results and final state of the system after
the use case has been completed. For example, after a with-
drawal the account balance is expected to be debited by the
withdrawn amount, and the ATM should be available and
ready for the next transaction.

A use case usually has a mainstream, most likely sce-
nario, such as the successful withdrawal of funds from an
ATM.

The use case may also contain alternative branches,
such as the disapproval of a withdrawal because (A) the
user’s bank card is unrecognized, (B) there is insufficient
cash in the ATM, or (C) there are insufficient funds in the

bank account. Use cases may also have shared or com-
mon pieces, such as a thread of steps re-used across sev-
eral use cases.

Use cases and test cases work well together in two
ways: If the use cases for a system are complete, accurate,
and clear, the process of deriving the test cases is straight-
forward. And if the use cases are not in good shape, the at-
tempt to derive test cases will help to debug the use cases.

Use Cases and Testing
Traditional test case design techniques include analyzing
the functional specifications, the software paths, and the
boundary values. These techniques are all valid, but use
case testing offers a new perspective and identifies test cas-
es which the other techniques have difficulty seeing.

Use cases describe the “process flows” through a sys-
tem based on its actual likely use, so the test cases derived
from use cases are most useful in uncovering defects in the
process flows during real-world use of the system (that mo-
ment you realize “we can’t get there from here!”). They also
help uncover integration bugs, caused by the interaction
and interference of different features, which individual fea-
ture testing would not see. The use case method supple-
ments (but does not supplant) the traditional test case de-
sign techniques. In fact, in the following example you will
see some merging with the boundary value technique,
which is an approach used to identify both valid and invalid
variations of the input data driving the use case.

Test
Design

QUICK LOOK

■ How to derive a test case

■ Prioritizing which test cases to build

■ A sample use case and resulting test cases

Developing

test cases

from use cases

by Ross Collard

Use cases are a practical way

of specifying the behavior of a system from a user’s perspective.

As such, they can provide a powerful source for generating test cases.

This article describes how to derive these test cases and provides

some typical examples.

http://www.stqemagazine.com/

A Use Case Example
Use Case Name: Select Product

Use Case Description

This use case helps to build a purchase order (PO) by adding a new line

item and selecting the product to be ordered. A PO can contain several

line items; each line item on the PO orders a quantity of one specific prod-

uct, from the vendor to whom the PO is addressed. (See Figure 1)

Pre-Conditions

The following pre-conditions need to be fulfilled for the use case to work

as expected: An open PO must already be in existence, with its status set

to the value “in progress,” and this PO must have a valid Vendor ID num-

ber and a unique PO number. The user must have entered a valid user ID#

and password, and be authorized to access the PO and to add or modify a

line item.

The number of line items on the existing PO must not equal twenty-

five. (For this sample, the organization’s business policy limits the number

of lines per PO to twenty-five or less.) The product number must be

unique on each existing line item (another business policy—no duplicate

products within one PO).

The system must be able to access the correct product list for the

vendor.

Post-Conditions

After the use case has executed, the expected final state of the system is

as follows: The same PO must still exist and still be open. A new line has

been added to the PO, with the next sequential line item number as-

signed; and the correct product has been selected for this line item (un-

less the use case was aborted).

The system must be left in the correct state to able to move on to the

next steps after the product selection. (These next steps are to enter a

quantity to be ordered on the same line item, check if sufficient inventory is

on hand for the order, etc. They are outside the scope of this test proj-

ect, except to make sure we have continuity: that “we can get there

from here.”)

The product number cannot duplicate an existing

product number on another line item on the same PO.

The product selected or entered must be a valid one

for this vendor.

Alternatively, the original PO must remain un-

changed from its original state if a product was not se-

lected (for example, because the user aborted the

process).

Error messages are issued, if appropriate, and after

the use case has been exercised the system is waiting in

a state ready to accept the next input command.

Use Case Flow of Events

For brevity, the following use case is not complete. Some

alternatives have been left out. The user actions are la-

beled with an identifier, which begins with “U,” and the

system actions have identifiers beginning with “S.” At the

end of each action below, the identifiers in parentheses

indicate the possible next actions in the use case. For ex-

ample, in response to user action U1, the system can take

either action S1.1 or S1.2. (See Figure 2A, page 35)

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 1999
32

FIGURE 1 An example of a Purchase Order system

Use cases and test cases work well together in two ways:

If the use cases for a system are complete, accurate, and clear, the process

of deriving the test cases is straightforward.

And if the use cases are not in good shape, the attempt to

derive test cases will help to debug the use cases.

PURCHASE ORDER BUILDER

Vendor ID#

PO #

Add Line

Change Line

Delete Line

PO Date

Addr. 1

Addr. 2

City State Zip

PO Subtotal: 0.00
Freight: 0.00

Tax: 0.00
PO Total: 0.00

Purchasing Agent ID#

Vendor Name

Line # Product Product Product Unit Line
ID# Description Quantity Price Total

1
2
3
4
5
6

25

Ship Date

● Select Product

● Enter Product

● Enter Quantity

● Calculate Price

● Calculate Tax

● Calculate Freight

● Close Line

http://www.stqemagazine.com/

The user
U1 Requests that a new line item be added to the PO. [S1.1, S1.2]

U2.1 Requests a list of products supplied by the vendor to whom the
PO is addressed. [S2]

or
U2.2 Alternatively, enters the specific product number directly into

the line item. [S3.1, S3.2]

U3.1 Selects the desired product from the vendor’s list. [S3.1, S3.2]
or

U3.2 Alternatively, decides there is no suitable product available from
this vendor to meet the need. The user aborts the process. Exit
from use case.

U4 Confirms that the right product has been selected or entered,
by comparing the displayed response to what the user had
intended to order. [S4.1, S4.2]

The system
S1.1 Adds a new line item, and assigns the next sequential line item

number within the PO. [U2.1, U2.2]
or

S1.2 Alternatively, states that a new line cannot be added. (The PO
already contains twenty-five line items.) Exit from use case.

S2 Provides the product list for this vendor. [U3.1,U3.2]

S3.1 Verifies that the product number selected or entered is a valid
one. Displays the description of the product for visual
verification by the user. [U4]

or
S3.2 Alternatively, rejects the entered product number. [U2.1, U2.2]

S4.1 Verifies that the product number (either selected via the list or
entered directly) does not duplicate any of the product numbers
on the other line items for the same PO. Exit from use case.

or
S4.2 Alternatively, if the product number is a duplicate, rejects it.

[U2.1, U2.2]

How to Derive the Test Cases
Normally, an important precursor to deriving test cases is to
first carefully review the use case for correctness and com-
pleteness. The use case developers need to address any am-
biguities, inconsistencies, and
omissions that we might find. I
won’t cover that review in this
article, except to show how the
process of creating tests can
uncover further problems.

Now that we have the use
case, how do we analyze it to
generate test cases? The
process is relatively straightfor-
ward. Remember, simple en-

gineering is great engineer-

ing.

Our test cases will traverse
paths through the use case. Test
design consists of picking those
paths. The technique is similar
to that used in white-box test-
ing, where we work with the
flow chart of the software. See
Boris Beizer’s Software Test-
ing Techniques for such white-
box test design techniques.

Where do we start? First,
look for the mainstream path
through the use case, the one
most likely to be used. In this
example, it is the process of
adding a new line item to a PO

and selecting the right product from the list. We need to
make sure this scenario works correctly: in other words,
we need to write a test case for it. The test case, in all its
glory, should look something like this:

A Test Case Example
Test Case Name: Select Product — Normal Mainstream Process

Use Case Name: Select Product

Use Case Path to Be Exercised: [U1 -> S1.1 -> U2.1 -> S2 -> U3.1 -> S3.1 -> U4 -> S4.1]

(See Figure 2B, next page)

Input Data: Product ID# 554875 (Bahamian Sardines, 6 ounce size).

Initial Conditions: PO # 6135527 is already open and displayed for Vendor ID# 42296.

User ID# 443 is authorized to work on this PO.

Seven line items already are attached to this PO.

Test Steps: Ensure that the initial conditions have been met before proceeding.

Follow the steps through the use case as listed above.

Compare the actual result to the expected result below.

Write the test case ID#, date and time, and actual results in the test log.

Expected Results: PO # 6135527 is still open and displayed for Vendor ID# 42296.

User ID# 443 is still authorized to work on this PO.

Eight line items are now attached to this PO.

New line item has been established for Bahamian Sardines, 6 ounce size.

New line item has been assigned line item number 8.

System is ready to proceed to the next activity (which is setting the quantity
of Bahamian sardines to be ordered).

After we have the first test case down, what do we do
next? We need to look for the major alternative paths that
the user could take through this use case. Since in the real
world the number of alternatives is usually overwhelming,
we need to select only the most fruitful ones, based on like-
ly frequency of use, risk, and complexity. We need to gener-
ate test cases for each of these paths too.

A Negative Test Case Example
We also need to think about what could go wrong. Invalid
input data is a good source of negative test cases. In addi-
tion, what if the pre-conditions of the use case have not
been met? The different ways in which the pre-conditions
could be violated are a fruitful source of negative test cas-
es. There are actually two possibilities for negative testing:

1. Creating test cases to exercise legitimate
paths through the use case which include in-
valid user actions. This is no different than exercising a
path that contains any other kind of action. That’s what I’ve
done in the sample test case below, where a user-entered
product number is rejected (step S3.2 in the use case).

2. Creating test cases by trying inputs not listed

in the use case. That includes deliberately violating the
use case pre-conditions, as well as unexpected erroneous
input at any step. For example, what if the PO status is not
“in progress” but instead has another status such as
“closed”? Can we still add a new line item to this PO?

To create a negative test case, we might decide to exer-
cise step S3.2, where the system rejects an invalid product
number and prompts the user for another one. At that
point, the user might decide to abort and exit until finding
out what the correct number is.

But there’s a problem: there’s no way to exit directly
after step S3.2. You must first enter a correct product num-
ber or request a list of products. That’s needlessly annoy-
ing. The use case is in error. Perhaps the system works cor-
rectly despite the use case. Or perhaps both the use case
and the system are wrong. Whichever is true, one possible
fix is to amend step S3.2 of the use case as follows:

S3.2 Alternatively, rejects the entered product
number. [U2.1, U2.2, U3.2]

The process of analyzing a use case always seems to un-
cover flaws in the use case itself. (This provides the impor-
tant side benefit of allowing the test professional to feel virtu-
ous. . . and even a little smug.) These use case flaws need to

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 1999
34

Selects
product

U3.1

END

Requests
line for new

product

U1

Requests
product

list

U2.1

Provides
list

S2

Quit (no
acceptable

product)

U3.2

Displays
product

S3.1

Rejects
(invalid
product)

S3.2

END

GO BACK
- U2.1 Request list

or
- U2.2 Enter product

Confirms
(not

duplicate)

S4.1

Rejects
(duplicate)

S4.2

Adds
line

S1.1

Rejects
request

S1.2

Enters
product
number

U2.2

Confirms
item

U4
END

GO BACK
- U2.1 Request list

or
- U2.2 Enter product

Use Case Paths User action

System action

Mainstream Path

FIGURE 2A A sample use case flow of events showing all potential user actions and resulting system actions
FIGURE 2B The black arrows indicate the mainstream use case path to be exercised by the test case example

Our test cases will traverse paths through the use case.

Test design consists of picking those paths.

The technique is similar to that used in white-box testing,

where we work with the flow chart of the software.

Use Case Paths

http://www.stqemagazine.com/

Ju ly/Augus t 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
35

be resolved as soon as they are found, since the resolution
may change the use case and thus change the test cases.

Here’s a negative test case for the use case, which will
work even if the flaw is not fixed:

Note that this test case does
not exercise a complete path
through the use case. There still
needs to be an exit strategy after
step S3.2, such as [U2.1 -> S2 ->
U3.2].

Risk Prioritization
If you fully analyze this short use
case, you can generate dozens of
test cases.

The number of test cases we
could build is usually overwhelm-
ing: unless the use case is life-criti-
cal (which is not the situation here),
we typically do not have the time to
exercise every single test case. In
fact, some test cases are just not
worth it. If we weigh the cost of
building and exercising the test case
against the probability of finding a
defect—together with the impor-
tance of that defect—we will choose
not to use the test case.

So how do we prioritize? We
need to weight the test cases, based
on: (a) the criticality of the condi-
tion being tested (how much trouble
could we get into), (b) the likely fre-
quency of use of the path or condi-
tion (the more it is used in live oper-
ation, the more opportunities it has
to break), (c) prior defect patterns

A Negative Case Example
Test Case Name: Select Product — Enter Invalid Product Code

Use Case Name: Select Product

Use Case Path to
Be Exercised: [U1 -> S1.1 -> U2.2 -> S3.2]

Input Data: Product ID# 545875 (Bahamian Sardines, 6 ounce size).

(Correct data is actually product ID# 554875.)

Initial Conditions: PO # 6135527 is already open and displayed for Vendor ID# 42296.

User ID# 443 is authorized to work on this PO.

Seven line items already are attached to this PO.

Product ID# 545875 is not a valid product number for this vendor.

Test Steps: Ensure that the initial conditions have been met before proceeding.

Follow the steps through the use case as listed above.

Compare the actual result to the expected result below.

Write the test case ID#, date and time, and actual results in the test log.

Expected Results: PO # 6135527 is still open and displayed for Vendor ID# 42296.

User ID# 443 is still authorized to work on this PO.

The same seven line items are still attached to this PO.

No new line item has been established.

Error message displayed: “Invalid Product ID#: Please re-enter or abort.”

System is ready to proceed to the next activity (e.g., adding the next line item,
or some other action such as closing the PO).

The simple answer: write them. We always need to examine
what information is available to use as a basis for design-

ing test cases. If use cases are not available, it is a good idea
for the test professional to prepare them.

A common problem testers face is under-specification.
With powerful modern development tools like Visual Basic, it
is easier for the software engineer to “just do it,” and develop
this Purchase Order Builder window without documenting the
business processes (use cases) that utilize the window. The
tester gets the window to test, with minimal instruction on
how it is supposed to work.

The act of drawing up test cases, frankly, forces the
tester to gain a thorough understanding of how the window
and the underlying system work, and often raises important
quality issues which were not seen by the developers and
clients (users).

Hard-bitten test professionals may throw up their hands

at this suggestion. They might say: “We don’t have enough
time even to run the test cases, let alone go back and re-in-
vent the functional specifications by preparing use cases.”

So here’s a better answer: persuade others (developers,
subject matter experts, and requirements writers) to develop
the use cases for us. This means that the tester has to be in-
volved early in the formulation of the functional specifica-
tions. The tester also has to be able to influence the form they
take (i.e., use cases) and participate in reviewing the use cas-
es for clarity, completeness, and correctness.

If we can’t persuade others to develop the use cases,
how much of our test time can we afford to allocate to prepar-
ing them ourselves? My rule of thumb is that 20% of the total
testing effort (including test planning, test case design, test
execution, and follow-up) can profitably be devoted to the use
case preparation. Intelligently used, this effort to develop use
cases will enhance the test project, not imperil it.

What If You Don’t Have Use Cases?

http://www.stqemagazine.com/

(the extent to which this type of condition has been trouble-
some in the past), and (d) complexity (the more complicat-
ed a path through the use case is, the more things could go
wrong).

In other words, a heavily-used, critical, and complex
path through the use case should be exercised by several
test cases. An infrequently-used, low-risk, simple path may
have only one test case or not get tested at all, because of
the time and resource limitations.

How do you get several test cases for a single path? By
merging the use case tests with test conditions from other
test design techniques. For example, boundary value analy-
sis can be used to vary the number of line items on the PO
(zero and twenty-four are the valid boundaries).

What Test Cases Have NOT
Been Covered?
No test case design technique is perfect; they all miss some
test cases. Even in the analysis of our sample use case, im-
portant test cases have been missed—because there are
some areas that the use case does not address. Two examples
(and there are more than these two test cases missing):

■ What happens if we try to add a line to a PO, but the
database is already physically full?

■ What happens if two users, working at different worksta-
tions, simultaneously try to add a line item to the same PO?

So how do we find these other test cases? Conducting a
peer review of the test case design would help. We should
also balance use case analysis with other techniques; other
test case design techniques which can be helpful here in-
clude cause-effect graphs, state-transition diagrams, statis-
tical sampling, and orthogonal arrays (but that’s the basis
for another story). And, above all, we should remember to
apply our good judgement and common sense. STQE

Ross Collard is a consultant who currently is working
on software testing and quality assurance projects for
AT&T, Cisco, GE, Lucent, and the State of California. He
teaches software testing for UC Berkeley. Ross has an
MS in computer science from the California Institute of
Technology and an MBA from Stanford. He can be
reached at rcollar@ibm.net.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 1999
36

The value of use cases is that they focus attention on the
user, rather than on the actions the system performs. In a

sense, they shift attention from verbs (things the system can
do) to a noun (the user). Use case tests force you to pay atten-
tion to tasks that span system features. They prevent you from
endlessly testing features in isolation.

Hans Schaefer, a consultant in Norway (hans.schaefer@
ieee.org), points out that there are more nouns in the system
than just the user. For example, when speaking of a system
that manages insurance policies, it’s natural to talk of a policy
as a distinct entity. And that entity has its own lifespan:
■ It is created (when the policy is issued).

■ It periodically communicates with the policyholder (in the
form of letters asking that premiums be paid).

■ It handles damages (when a claim is issued).

■ It changes its attributes (when a customer changes ad-
dress, or when the premium is raised because of a claim).

■ It goes away (when the policy is cancelled).

For any policy, you can tell the “story of its life.” One pol-
icy might have an uneventful life: it is created, its owner duti-
fully pays her premiums and never makes a claim, then the

policy peacefully lapses. Another might have a tumultuous
life, filled with missed payments, dunning letters, and spuri-
ous claims. Each of these life stories can be used as a test
case. Such a test case may span many conventional use cas-
es. That is, a single event in the policy’s life—such as a claim
against it being handled by a claims adjuster—is itself an in-
teraction between some user and the system.

In Hans’s approach, the nouns being tested can be any of
the entities in an entity-relationship model. The actions can be
state transitions, or programs run, or user actions in an online
system, or batch jobs processing an entity—whatever fits
your circumstance.

Hans says of these tests, “I am not sure if there is any stan-
dard name for this kind of long-duration scenario testing. But
some of my customers use the term ‘scenario test’ for this. And,
as this type of testing is new to them, they find lots of bugs!”

Hans Buwalda, a consultant in the Netherlands
(hans.buwalda@cmg.nl), calls this “soap opera testing.” The
tests describe real life, but are exaggerated—just like the
soaps on TV. As with Ross Collard’s approach, the scenarios
are enhanced with test conditions derived from other design
techniques. —B.E.M.

A Variant on Use Cases

The number of test cases we could build is usually overwhelming:

unless the use case is life-critical, we typically do not have the time to exercise

every single test case. In fact, some test cases are just not worth it.

http://www.stqemagazine.com/
Alison Kincaid
STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering

http://www.stqemagazine.com/
http://www.sqe.com/
Alison Kincaid
This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing,
a division of Software Quality Engineering.

