
1Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Black Box Software Testing
Fall 2005
GUI REGRESSION AUTOMATION
by
Cem Kaner, J.D., Ph.D.
Professor of Software Engineering
Florida Institute of Technology
and
James Bach
Principal, Satisfice Inc.
Copyright (c) Cem Kaner & James Bach, 2000-2004
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

These notes are partially based on research that was supported by NSF Grant EIA-0113539 ITR/SY+PE:
"Improving the Education of Software Testers." Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

2Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Overview

• The GUI regression test paradigm
• Engineering regression automation: Some

successful architectures
• Planning for near-term ROI
• 30 common mistakes
• Questions to guide your analysis of

requirements

Acknowledgment
Much of the material in this section was developed or polished during the meetings of
the Los Altos Workshop on Software Testing (LAWST). See the paper, “Avoiding
Shelfware” for lists of the attendees and a description of the LAWST projects.

3Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

The regression testing paradigm
This is the most commonly discussed
automation approach:

1. Create a test case
2. Run it and inspect the output
3. If the program fails, report a bug and

try again later
4. If the program passes the test, save the

resulting outputs
5. In future tests, run the program and

compare the output to the saved
results. Report an exception whenever
the current output and the saved
output don’t match.

4Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

5Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

WooWoo--hoohoo! We really get the machine to do ! We really get the machine to do a a whole lotwhole lot of our work! of our work!
(Maybe (Maybe …… but not this way.)but not this way.)

First, is this really automation?
• Analyze product -- Human
• Design test -- Human
• Run test 1st time -- Human
• Evaluate results -- Human
• Report 1st bug -- Human
• Save code -- Human
• Save result -- Human
• Document test -- Human
• Re-run the test -- Machine

• Evaluate result -- Machine plus human
if there’s a mismatch

• Maintain result -- Human

6Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

This is computerThis is computer--assisted assisted
testing, not test automation. testing, not test automation.

Computer assistance can be Computer assistance can be
very useful, but we donvery useful, but we don’’t want t want
to confuse ourselves by calling to confuse ourselves by calling

it more than it is.it more than it is.

7Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Cost and benefit:
The fundamental equations?
Can we really
model the costs
and benefits in
terms of these
equations?

Manual testing cost = Manual preparation cost + (N x Manual execution cost) ???

Automated testing cost = Automated preparation cost + (N x Automated execution cost) ???

Of course not. They treat …
– Maintenance costs as non-existent
– The information gained from manual and automated tests as comparable
– The incremental benefits as constant. Is the Nth use really as valuable as the 2nd?

8Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Direct costs
• Test case creation is expensive. Estimates for

individual tests run from 3-5 times the time to create
and manually execute a test case (Bender) to 3-10
times (Kaner) to 10 times (Pettichord) or higher
(custom controls).

• Automated test creators get paid more (on
average) than comparably senior manual test
creators.

• Licensing costs can be quite high. You may have
to buy a license for any programmer who wants to
replicate any bug exposed by these tests.

• Maintenance costs can be enormous. Brian
Marick estimates that the cost of revising (including
figuring out) a typical GUI test equals the cost of
programming it fresh.

• Development costs go beyond the test cases.
To bring maintenance costs under control, many
groups will develop test harnesses.

You You cancan
bring these bring these
costs under costs under
control, but control, but
it will take it will take
strategy, strategy,

investment investment
and work.and work.

9Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Indirect costs:
Consequences & opportunity costs

– You have to design, develop, test, document and store the test, not
just think it up and do it.

– Consequence: You probably won’t develop as many tests per
week. So …
• You’ll find some bugs later than you would have with manual

testing (because you’ll develop the tests later). It often costs
more to fix bugs later.

• You probably have to increase the testing staff in order to
generate automated tests. Otherwise, how will you achieve the
same breadth of testing?

• Your most technically skilled staff are tied up in automation, so they
aren’t doing bug hunting or training other testers.

• It typically takes longer per test to create an
automated GUI-level test than to create a manual test:

10Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Effectiveness?
• Relying on pre-designed tests carries

the 20 questions problem.
– Defining a test suite before you

know a program’s weaknesses is
like playing 20 questions where you
have to ask all the questions before
you get your first answer.

• A common estimate at LAWST (and
elsewhere) has been that the GUI
regression tests found about 15% of
the total bugs found in testing.
– The numbers vary widely, but they

are disturbing. See our first
discussion of regression testing.

Some new Some new
approaches offer approaches offer

significant potential. significant potential.
II’’ll return to them ll return to them

shortly.shortly.

11Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Benefits of regression come later
• A good set of regression tests might

eventually provide significant value
– Smoke tests, change detection in low-

risk areas, patches, localization …
• But because they take so long to develop,

those benefits are delayed.
• Consider the version (not build) when

these tests are created:
– Rerun tests in this version probably have

lower power than new tests
• Several senior practitioners have

estimated a 3-version (e.g. 3-year) time
to recover the investment. They posit
low reuse value in the first version and
include maintenance costs.

Maintainability is Maintainability is
essential for essential for
recovering an recovering an
investment in investment in

regression tests.regression tests.

12Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Test automation requires
software engineering

• Win NT 4 had 6 million lines of code,
and 12 million lines of test code

• Common (and often vendor-
recommended) design and programming
practices for automated testing are
appalling:

– Embedded constants
– No modularity
–No source control
–No documentation
– No requirements analysis

No
wonder
we fail.

13Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

14Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A simple(?) example
• Let’s look at Calendar Creator

– Consumer market
– All you’re really trying to do is capture

events and lay them out on a pretty
calendar.

– How complex could that get?

15Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator
• Here are just somesome of the things we can vary in these calendars

– Different languages for headings
– Lots of basic layouts, or you can grow your own

16Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

• Lots of basic layouts – or you can grow your own
• “Templates are pre-formatted layouts that include artwork and text styles.

You can create new calendars from templates or apply a template to an
existing calendar.” (CC help)

17Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

“QuickStyles are pre-formatted font and color schemes that can be applied to any
calendar, even one that was created using a template. The QuickStyle you select
simply replaces all existing font and color options in the active calendar. Once you’ve
applied a QuickStyle, you can further customize the objects on your calendar to create
dramatic effects. You can even create and save your own QuickStyles.” (CC Help)

18Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator
• Here are just somesome of the things we can vary in these calendars

– Different languages for headings
– Lots of basic layouts, or you can grow your own
– Different color schemes
– Lots of pictures (use theirs or your own clipart) (of various

file types) (in various directories, maybe on a remote
machine)

19Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

– Lots of pictures (use theirs or your own clipart) (of various file
types) (in various directories, maybe on a remote machine)

– (I’m not showing the library / file navigation tabs, but they exist)
– One or more pictures for the month, on the top or sides

20Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator
• Here are just somesome of the things we can vary in these calendars

– Different languages for headings
– Lots of basic layouts, or you can grow your own
– One or more pictures for the month, on the top or sides
– Lots of pictures (use theirs or your own clipart) (of various file

types) (in various directories, maybe on a remote machine)
– One or more pictures for the month, on the top or sides
– 5 or 7 days per week, weeks start any day
– Add lots and lots of events to those days

21Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

We imported US holidays on the video. Here we’re adding dates for famous
inventions, Canadian-English holidays, days of honor, and Jewish holidays.
You can add your own events too, and make your own collection of them.

22Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator
• Here are just somesome of the things we can vary in these calendars

– Different languages (French, German, Russian, etc.) for headings
– Lots of basic layouts, or you can grow your own
– Lots of pictures (use theirs or your own clipart) (of various file

types) (in various directories, maybe on a remote machine)
– One or more pictures for the month, on the top or sides
– 5 or 7 days per week, weeks start any day
– Add lots and lots of events to those days
– Reformat and reposition the headings

23Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Reformat and reposition headings—from here…

24Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Reformat it. I added a shadow to the text, filled the text with a “large
links” pattern, changed its color to gold, and then fit the text to a
balloon shape.

25Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

• Here’s the calendar page for
April, so far

• Notice there are 2 events—
matches invented and World
Health Day on April 7.

• We can have more. They
overflow to the bottom of the
page if they don’t fit. (Or to the
next page if the bottom fills up.)

26Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

I moved April up and “Monthly
Planner” down (monthly planner
is still selected).

27Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator
• Here are just somesome of the things we can vary in these calendars

– Different languages (French, German, Russian, etc.) for text
– Lots of basic layouts, or you can grow your own
– Reformat and reposition the headings
– One or more pictures for the month, on the top or sides
– Lots of pictures (use theirs or your own clipart) (of various file

types) (in various directories, maybe on a remote machine)
– 5 or 7 days per week, weeks start any day
– Add lots and lots of events to those days. One or more events on

any day. Different typefaces and sizes for each event
– Reformat and reposition the headings
– Zero, one, or more pictures on any day
– Width and height of the day (in the calendar table) depend

on size of the paper and the size of graphics (if any) beside
or above or below the table

28Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

• Let’s make the page smaller.
• We’ve got text at the top and the bottom…

29Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Changed from 8.5 x 11 to 2.5 x 5.0 and from portrait to landscape

30Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Page setup had no effect on the
calendar onscreen.

31Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

The print preview adjusts things reasonably

32Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

• Print Preview gives this message.
• Looks like we’ll get different messages depending on the printer.

33Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator

Here are just somesome of the things we can vary in these calendars
– Different languages (French, German, Russian, etc.) for text
– Lots of basic layouts, or you can grow your own
– Reformat and reposition the headings
– One or more pictures for the month, on the top or sides
– Lots of pictures (use theirs or your own clipart) (of various file types) (in

various directories, maybe on a remote machine)
– 5 or 7 days per week, weeks start any day
– Add lots and lots of events to those days. One or more events on any

day. Different typefaces and sizes for each event
– Reformat and reposition the headings
– Zero, one, or more pictures on any day
– Width and height of the day (in the calendar table) depend on size of the

paper and the size of graphics (if any) beside or above or below the table
– Change margins, spread a calendar across several pages, or

shrink to fit several on one page when we print.

34Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Change several different margins

35Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Spread a calendar across several pages, or shrink calendars to fit
several on one page when we print.

36Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

If we’re printing over several pages, we may want to print double-sided.

37Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Calendar Creator

Here are just somesome of the things we can vary in these calendars
– Different languages (French, German, Russian, etc.) for text
– Lots of basic layouts, or you can grow your own
– Reformat and reposition the headings
– One or more pictures for the month, on the top or sides
– Lots of pictures (use theirs or your own clipart) (of various file types) (in

various directories, maybe on a remote machine)
– 5 or 7 days per week, weeks start any day
– Add lots and lots of events to those days. One or more events on any

day. Different typefaces and sizes for each event
– Reformat and reposition the headings
– Zero, one, or more pictures on any day
– Width and height of the day (in the calendar table) depend on size of the

paper and the size of graphics (if any) beside or above or below the table
– Change margins, spread a calendar across several pages, or shrink to fit

several on one page when we print.

38Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Designing reusable tests
• We’ve just looked at three types of

variation:
– How the program interacts with

input devices (picture files, event
files—and a whole address database we
haven’t looked at)

– How the program interacts with
output devices (printers, but there are
disks and displays too)

– How the world designs calendars
(and how you can use the program to
make calendars that people in the world
would consider functional and/or pretty)

• So let’s start with tests associated with
these.

Our goal is to Our goal is to
partition the solution partition the solution

so changes to the so changes to the
software or software or

environment require environment require
only narrow, focused only narrow, focused
changes to the tests.changes to the tests.

39Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Variation associated with
input devices
• Build

– Graphics libraries
– Event datafiles
– Address databases

• that live in
– Different directories
– On different drives

• Local and remote
• and are in different states of

repair
• and plan to make them available,

unavailable, or to interrupt their
availability during use

The program will have to The program will have to
deal with new kinds of deal with new kinds of
inputs from new devices inputs from new devices

no matter how it is no matter how it is
designed or implemented.designed or implemented.
What other input devices What other input devices

should we plan for?should we plan for?

40Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Variation associated with
output devices
• We don’t need to know how this

program will print to design tests of
calendars that are bannered across
pages (multiple pages that have to be
pasted together).

• What other test ideas can we
develop that depend on the
characteristics of the printer or the
paper or the program’s interface to
them?
– Can we build a list of test ideas

for variation among (e.g.) printers?
– Is it possible to take an output

and transform it before printing it,
so that it is more challenging for
the target printer?

We are planning for
coping with changes
in the capabilities of
the output device, not

(in these ideas) for
changes in the

program.

We are planning for We are planning for
coping with changes coping with changes
in the capabilities of in the capabilities of
the output device, not the output device, not

(in these ideas) for (in these ideas) for
changes in the changes in the

program. program.

41Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Variation in desired results

• How the world designs
calendars

– There are plenty of calendar
designs in the world.

– Some attributes vary from
country to country (e.g.
weekdays vertical or
horizontal).

– Designs involve taste and
function—layout for a small
DayTimer page will be very
different from layout for a
wall calendar.

We could build a We could build a
large database of large database of
calendar designs, calendar designs,

to use as tests, to use as tests,
without once without once

referring to any referring to any
implementation implementation

details of the details of the
program.program.

42Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Another source of variation: The UI
• The presentation of a program can change

without any change to its underlying
capabilities. For example:
– The name of any menu item or command or

dialog can change.
– Any item can move from one menu or dialog

to any other menu or dialog.
– The sequence of sub-tasks can change order,

and some might be added or separated.
– The effect of one choice on another can

change.
– The presentation of choices might depend

on display bandwidth.
– The presentation of choices might depend

on the user interface (system-selected)
language

Rather than Rather than
trying to force trying to force
people to lock people to lock

down the UI so down the UI so
we can treat it we can treat it

like a set of like a set of
constants, letconstants, let’’s s
recognize that recognize that

it is a collection it is a collection
of variables.of variables.

43Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A fifth locus of variation:
The test tool

• What is the syntax of your test
tool’s programming language?
– When did it last change?

• Have you ever tried to port
your tests from one vendor’s
tool to another’s?
– Do you really want all your

tests to be locked to a specific
vendor because of the cost of
porting to a new tool
language?

Can we write our Can we write our
tests in a language tests in a language
that is independent that is independent
of the language of of the language of

the test tool? the test tool?

44Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A data-driven approach - 1
• Define your tests in a combination

chart:
– Attributes of the calendar go across

the top of a very wide table
– One row per test
– The cell defines the value, such as

• What month
• What typeface / size / style
• What event lists are loaded
• Where the main calendar picture

for that month is positioned
• What the picture is

Brenda Brenda
Takara was Takara was
the champion the champion

of this of this
approach at approach at
Power Up Power Up

45Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A data-driven approach - 2
• The combination chart is parsed and

executed by an interpreter
– Select a row (e.g. Row 3). This is a

specification of a test.
– The interpreter reads the values of the

cells in Test 3, one column at a time.
– A distinct method (test script) is

associated with each column
• Example: If the column specifies a date,

the method navigates the calendar to
that date.

• The primary chart includes values
specific to calendars, not to the devices,
UI, or test tool.

• You might extend the chart (or use a linked
chart) to specify device-dependent tests.

If the program under
test changes, change

the interpreter’s
methods.

The table’s tests can
stay the same, no
matter how many

changes you make to
the user interface.

If the program under If the program under
test changes, change test changes, change

the interpreterthe interpreter’’s s
methods. methods.

The tableThe table’’s tests can s tests can
stay the same, no stay the same, no
matter how many matter how many

changes you make to changes you make to
the user interface.the user interface.

46Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A data-driven approach - 3

• It often makes sense to write a
wrapper around every one of the
test tool’s commands.

• So,
– rather than directly calling the

tool’s MoveObjectUp command
– you might create your own

MyMoveObjectUp command
that calls MoveObjectUp

– and then write all of your code to
call MyMoveObjectUp.

If vendor syntax changes,
or if you change vendors,
rewrite MyMoveObjectUp
to call whatever it has to
call to preserve its old

functionality.
All your methods that

called MyMoveObjectUp
can stay the same.

If vendor syntax changes, If vendor syntax changes,
or if you change vendors, or if you change vendors,
rewrite rewrite MyMoveObjectUpMyMoveObjectUp
to call whatever it has to to call whatever it has to
call to preserve its old call to preserve its old

functionality.functionality.
All your methods that All your methods that

called called MyMoveObjectUpMyMoveObjectUp
can stay the same.can stay the same.

47Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A data-driven approach - 4
• An higher-level execution engine runs the

test process:
– Reads in the appropriate table(s)
– Points the interpreter at the table(s)
– Sets up output

• In our case, for each test:
– Print Section 1 (probably 1 page)

» Name the test (title of calendar)
» list all the settings (variables and

their values)
– Print Section 2 (probably 1 page)

» The test result (the calendar)

Note: I have Note: I have
simplified and simplified and
extended this extended this

from the original from the original
Power Up work, to Power Up work, to

make a clearer make a clearer
teaching example.teaching example.

48Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A data-driven approach - 5
• In principle, you could extend this:

– Include a “Results Saved” column
• If no results yet saved

– Save the test results to file
– Set the value (perhaps file location) in

Results Saved
• If results are already saved,

– Save the test results to a temp file
– Compare current results with the

previous results
– Report any discrepancies detected

• In practice, you probably want to save
alphanumeric or logic results, or not bitmaps
because there are serious bitmap-equivalence
problems to solve.

With this, you With this, you
have a regression have a regression

test tool. test tool.
Without it, you Without it, you

still have a still have a
perfectly good test perfectly good test

execution tool.execution tool.

49Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

A data-driven approach - 6
• We stopped at test execution.

– There were so many variables to play with that
we didn’t have time to repeat tests the program
had already passed. So we did risk-based
regression (retest in same areas) rather than
reuse based regression (retest with same tests)

– Of course, we still had tests available for reuse
to verify a bug fix

• The execution engine allowed testers to write
logical specifications of their tests, focusing on
creating interesting patterns of test inputs, instead
of being distracted by time-consuming and error-
prone test execution.

• The printouts—in this case—adequately described
expected results, supporting visual inspection for
pass/fail.

In essence, the In essence, the
tool supported tool supported

exploratory exploratory
testing of a testing of a

complex complex
product by a product by a
skilled tester. skilled tester.

50Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Data driven architecture:
What did we achieve?
• Testers used a test design tool (spreadsheet

with appropriate columns) and their input to
the tool directly translated to test execution
– Natural interface
– Highly resilient in the face of constant change
– We automated execution, not evaluation
– Testers focused on design and results, not

execution
– Saved SOME time
– We didn’t run tests twice
– Served, in this case, as a support tool for

exploration, rather than regression
– Extends naturally to regression in

appropriate cases

When we think of When we think of
it as computerit as computer--
assisted testing, assisted testing,
instead of test instead of test

automation, we automation, we
realize that an realize that an

incomplete incomplete
solution can be solution can be

very usefulvery useful——and and
much cheaper much cheaper

than a than a ““completecomplete””
solution.solution.

51Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Data driven architecture:
What did we NOT achieve?

• Several problems with this approach
– No model for generating tests. It takes

whatever we provide, good or bad.
– No model or evaluation of any type of

coverage.
– No provision for sequential effects, this

is pure no-sequential combination
testing.

– We have a column for every variable,
even though many tests will set far fewer
variables.

– The spreadsheet can get unmanageably
wide.

– For programs that let you set the same
variable (do the same thing) repeatedly,
this approach becomes unusable.

52Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Other data-driven architectures
While we were developing this in 1992-93,
Hans Buwalda was publishing a more general
solution:
– Rather than put every variable into its own

separate column and then define a separate
setter method for every variable

– Hans would create domain-specific
languages for his clients
• The verbs are action words – keywords

that represent a client-meaningful task
and are named in a client-meaningful way

• The nouns are data (parameters)
• An action word might get some data, set

some data, and manipulate some data.

The client can write her The client can write her
own tests by listing own tests by listing
action words and action words and
parameters in a parameters in a

spreadsheet.spreadsheet.
They are read and They are read and

executed via an executed via an
interpreter, with the interpreter, with the
same maintainability same maintainability
benefits as in the last benefits as in the last

example.example.

53Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Data-driven architectures
aka GUI Testing Frameworks

• Since Buwalda’s paper (and early papers from
several others, including Bret Pettichord),
this solution has gained much popularity

• All of the frameworks are code libraries that
separate designed tests from code details.
– modular programming of tests
– reuse components
– hide design evolution of UI or tool

commands
– independence of application (the test case)

from user interface details (execute using
keyboard? Mouse? API?)

– provide opportunity to routinely
incorporate important utilities in your
tests, such as memory check, error
recovery, or screen snapshots

But many But many
vendors still vendors still
promote, and promote, and

many people still many people still
try to use, try to use,

capturecapture--replay.replay.
After all, who After all, who

needs needs
maintainability, maintainability,

right?right?

54Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Data-driven / keyword driven
approaches: common problems
• No model for generating tests
• No measurement or model of coverage
• Domain-specific languages are poorly

researched and hard to design
– The people who will be designing them

in the field are typically, in terms of
language design, amateurs.

• Some tools require close collaboration
between business analyst (non-
programming tester) and a programmer.
– Tests may be flexible in terms of data

values, but inflexible in terms of order
or combination with new variables or
tasks.

Some of Some of
these do a these do a

better job of better job of
supporting supporting
exploration exploration
than others.than others.

55Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

GUI Regression Automation Readings

• Chris Agruss, Automating Software Installation Testing
• Tom Arnold, Visual Test 6 Bible
• James Bach, Test Automation Snake Oil
• Hans Buwalda, Testing Using Action Words
• Hans Buwalda, Automated testing with Action Words: Abandoning Record & Playback
• Elisabeth Hendrickson, The Difference between Test Automation Failure and Success
• Mark Fewster & Dorothy Graham, Software Test Automation
• Linda Hayes, The Automated Testing Handbook
• Doug Hoffman, Test Automation course notes
• Cem Kaner, Avoiding Shelfware: A Manager’s View of Automated GUI Testing
• Cem Kaner, Architectures of Test Automation
• John Kent, Advanced Automated Testing Architectures
• Bret Pettichord, Success with Test Automation
• Bret Pettichord, Seven Steps to Test Automation Success
• Keith Zambelich, Totally Data-Driven Automated Testing
ACKNOWLEDGEMENT

Much of the material in this section was developed or polished during the meetings of the Los
Altos Workshop on Software Testing (LAWST). See the paper, “Avoiding Shelfware” for lists
of the attendees and a description of the LAWST projects.

56Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Three modern examples of
data-driven approaches

• SAFS: Software Automation Framework Support
– http://safsdev.sourceforge.net/Default.htm

• TestArchitect (from LogiGear)
– http://www.logigear.com/products/testarchitect/
– This is Buwalda’s latest work

• FIT: Framework for Integrated Test
– http://c2.com/cgi/wiki?FrameworkForIntegratedTest

• For more links to (especially open source) GUI-level and code-
level test harnesses

– http://c2.com/cgi/wiki?TestingFramework
– http://www.io.com/~wazmo/blog/archives/2004_01.html

• The main GUI test tool vendors also support data-driven testing

57Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

58Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

You can plan for near-term ROI
• Some tests are fundamentally repetitive,

and are reused many times in a short time
– Smoke testing

• Check every build with such basic
tests that failure disqualifies the build.

– Variations on a theme
• Many instances of almost the same

test, slight variations in data or timing
• Useful for troubleshooting

– Configuration testing
• Test 50 printers, same test suite,

same night.
• Who would want to run this suite

50x by hand?

If it costs 10x as
much to

automate the test
as to run it by

hand, but you’ll
run it 20 times in
the next week, of

course you
should automate

it.

If it costs 10x as If it costs 10x as
much to much to

automate the test automate the test
as to run it by as to run it by

hand, but youhand, but you’’ll ll
run it 20 times in run it 20 times in
the next week, of the next week, of

course you course you
should automate should automate

it.it.

59Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

You can plan for near-term ROI
• Some tests are too hard to do manually.

Automate these tests to extend your reach
– Load and stress testing
– Life testing
– Function equivalence testing
– Performance benchmarking

• Oracle (early 1980’s) did performance
comparisons of features from build to
build to expose anomalous timing
differences:
– often caused by delayed-fuse bugs,

like wild pointers
– bugs that might not become visible

in normal testing until much later
(and then they are irreproducible).

The value of
automating these is
not that you save a

few nickels.
The value is that

automation lets you
gain information
that you couldn’t
otherwise gain.

60Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

61Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Common mistakes in GUI
test automation
1. Don’t write simplistic test cases.
2. Don’t make the code machine-specific.
3. Don’t automate bad tests.
4. Don’t create test scripts that won’t be

easy to maintain over the long term.
5. Avoid complex logic in your test

scripts.
6. Don’t mix test generation and test

execution.
7. Don’t deal unthinkingly with ancestral

code.
8. Don’t forget to retire outdated or

redundant regression tests.

62Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

9. Don’t spend so much time and effort on
regression testing.

10. Don’t stop asking what bugs you aren’t
finding while you automate tests.

11. Don’t use capture/replay to create tests.
12. Don’t write isolated scripts in your spare

time.
13. Don’t assume your test tool’s code is

reliable or unlikely to change.
14. Don’t put up with bugs and bad support

for the test tool.
15. Don’t “forget” to document your work.
16. Don’t fail to treat this as a genuine

programming project.

Common mistakes in
GUI test automation

63Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

17. Don’t insist that all your testers (or all
the testers you consider skilled) be
programmers.

18. Don’t give the high-skill work to
outsiders.

19. Don’t underestimate the need for staff
training.

20. Don’t use automators who don’t
understand testing (or use them
cautiously).

21. Don’t use automators who don’t
respect testing.

22. Don’t mandate “100% automation.”

Common mistakes in GUI
test automation

64Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Common mistakes in GUI
test automation

23. Don’t underestimate the cost of
automation.

24. Don’t estimate the value of a test in terms
of how often you run it.

25. Don’t equate manual and automated
testing.

26. Don’t underestimate the need for staff
training.

27. Don’t expect to be more productive over
the short term.

28. Don’t put off finding bugs in order to
write test cases.

29. Don’t expect to find most of your bugs
with regression tests.

30. Don’t forget to clear up the fantasies that
have been spoon-fed to your management.

65Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

66Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements analysis
Automation requirements aren’t only about the
software under test and its risks. To understand
what we’re up to, we have to understand:
– The software under test and its risks
– How people will use the software
– What environments the software runs under

and their associated risks
– What tools are available in this environment

and their capabilities
– The development strategy and timeframe for

the software under test
– The regulatory / required recordkeeping

environment
– The attitudes and interests of test group

management.
– The overall organizational situation

We can do the We can do the
same stakeholder same stakeholder

and interests and interests
analysis as we did analysis as we did

for test for test
documentation.documentation.

67Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements analysis

• Requirement:
– “Anything that drives design choices.”

• The paper (Avoiding Shelfware) lists 27 questions. For example,
• Will the user interface of the application be stable or not?

• Let’s analyze it.
– The reality is that, in many companies, the UI changes late.
– Suppose we’re in an extreme case, the UI changes frequently and

very late.
– Does that mean we cannot automate cost effectively?
– No. It means that we should

• Do only those types of automation that can yield a fast return on
investment, or

• Invest carefully in an approach that maximizes maintainability.

68Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• Will the user interface of the application

be stable or not?
• Who wants these tests? To what degree

are they favored stakeholders? What
influence should they have over your test
design?

• Does your management expect to recover
its investment in automation within a
certain period of time? How long is that
period. How easily can you influence these
expectations?

• Are you testing your own company’s code
or the code of a client? Does the client
want (is the client willing to pay for)
reusable test cases or will it be satisfied
with bug reports and status reports?

69Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• Do you expect this product to sell through

multiple versions?
• Do you anticipate that the product will be

stable when released, or do you expect to
have to test Release N.01, N.02, N.03 and
other patch releases on an urgent basis after
shipment?

• Do you anticipate that the product will be
translated to other languages? Will it be
recompiled or relinked after translation (do
you need to do a full test of the program
after translation)? How many translations
and localizations?

• Does your company make several products
that can be tested in similar ways? Is there
an opportunity for amortizing the cost of
tool development across several projects?

70Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• How varied are the configurations

(combinations of operating system
version, hardware, and drivers) in your
market? (To what extent do you need to
test compatibility with them?)

• What level of source control has been
applied to the code under test? To what
extent can old, defective code
accidentally come back into a build?

• How frequently do you receive new
builds of the software?

• Are new builds well tested (integration
tests) by the developers before they get
to the tester?

• To what extent have the programming
staff used custom controls?

71Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• How likely is it that the next version of

your testing tool will have changes in its
command syntax and command set?

• What are the logging/reporting capabilities
of your tool? Do you have to build these in?

• To what extent does the tool make it easy
for you to recover from errors (in the
product under test), prepare the product
for further testing, and re-synchronize the
product and the test (get them operating at
the same state in the same program).

• In general, what kind of functionality will
you have to add to the tool to make it
usable?

72Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• Is your company subject to a regulatory

requirement that test cases be
demonstrable?

• Will you have to be able to trace test
cases back to customer requirements and
to show that each requirement has
associated test cases?

• Is your company subject to audits or
inspections by organizations that prefer
to see extensive regression testing?

• Is your company subject to a litigation
risk that you should manage partially by
making sure that test cases are
demonstrable?

73Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• If you are doing custom programming, is

there a contract that specifies the
acceptance tests? Can you automate
these and use them as regression tests?

• What are the skills of your current staff?

• Must it be possible for non-programmers
to create automated test cases?

• Are cooperative programming team
members available to provide automation
support such as event logs, more unique
or informative error messages, and
hooks for making function calls below the
UI level?

74Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Requirements questions
• What kinds of tests are really hard in

your application? How would automation
make these tests easier to conduct?

• To what extent are oracles available?

• To what extent are you looking for
delayed-fuse bugs (memory leaks, wild
pointers, etc.)?

75Black Box Software Testing Copyright © 2003-05 Cem Kaner & James Bach

Think about:
• Regression automation is expensive

and can be inefficient.
• We are doing computer-assisted

testing, not full automation.
• Regression is just one target of

(partial) automation. You can create
and run new tests instead of reusing
old tests.

• Developing programmed tests is
software development.

• Maintainability is essential.
• Extending your reach may be more

valuable than repeatedly reaching for
the same things.

• Design to your requirements.

And set management And set management
expectations with care.expectations with care.

In this respect, tool In this respect, tool
vendors can sometimes vendors can sometimes
be your worst enemies.be your worst enemies.

