
1Black Box Software Testing Copyright Kaner © 2006

Black Box Software Testing
Fall 2006
Exploratory Testing

Cem Kaner, J.D., Ph.D.
Professor of Software Engineering
Florida Institute of Technology
Copyright (c) Cem Kaner 2006
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

These notes are partially based on research that was supported by NSF Grant EIA-0113539 ITR/SY+PE:
"Improving the Education of Software Testers." Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Much of the material in these slides was provided or inspired by James Bach, Michael Bolton, Jonathan Bach,
Rebecca Fiedler, and Mike Kelly.

2Black Box Software Testing Copyright Kaner © 2006

Overview
I coined the phrase “exploratory
testing” in 1983 to describe the practice
of some of the best testers in Silicon
Valley. Naturally, the concept has
evolved (and diverged) over the years.
ET has been a lightning rod for criticism,
some of it justified. This lecture
considers where I think we are now,
controversies, misunderstandings and
valid concerns surrounding ET.
ET has become fashionable. To
accommodate non-students who have
asked for access to the ET videos, I
cross-references to some points from
prior videos.
If you are taking the full BBST course, I
trust/hope that these cross-references
will provide a helpful review.

3Black Box Software Testing Copyright Kaner © 2006

Some key points
• ET is an approach to testing, not a

technique
– You can use any test technique in an

exploratory way or a scripted way
– You can work in an exploratory way

at any point in testing
• Effective testing requires the

application of knowledge and skill
– This is more obvious (but maybe

not more necessary) in the
exploratory case

– Training someone to be an explorer
probably involves greater emphasis
on higher levels of knowledge

4Black Box Software Testing Copyright Kaner © 2006

Outline
• An opening contrast: Scripted testing
• The nature of testing
• The other side of the contrast:

Exploration
• Exploratory testing: Learning
• Exploratory testing: Design
• Exploratory testing: Execution
• Exploratory testing: Interpretation
• Exploratory testing after 23 years

5Black Box Software Testing Copyright Kaner © 2006

An opening
contrast:

Scripted testing

6Black Box Software Testing Copyright Kaner © 2006

Scripted testing
A script specifies
• the test operations
• the expected results
• the comparisons the human or

machine should make
These comparison points are
• useful, but fallible and incomplete,

criteria for deciding whether the
program passed or failed the test

Scripts can control
• manual testing by humans
• automated test execution or

comparison by machine

7Black Box Software Testing Copyright Kaner © 2006

Key benefits of scripts
Scripts require a big investment. What
do we get back?
The scripting process provides
opportunities to achieve several key
benefits:
• Careful thinking about the design of

each test, optimizing it for its most
important attributes (power,
credibility, whatever)

• Review by other stakeholders
• Reusability
• Known comprehensiveness of the set

of tests
• If we consider the set sufficiently

comprehensive, we can calculate as a
metric the percentage completed of
these tests.

8Black Box Software Testing Copyright Kaner © 2006

Reminder from the oracle lecture:
Programs fail in many ways
Based on notes from Doug Hoffman

System
under

test

Program state

Intended inputs

System state

Configuration and
system resources

From other cooperating
processes, clients or servers

Monitored outputs

Program state, including
uninspected outputs

System state

Impacts on connected
devices / system resources

To other cooperating
processes, clients or servers

9Black Box Software Testing Copyright Kaner © 2006

Scripts are hit and miss …
People are finite capacity information
processors
• Remember our demonstration of

inattentional blindness
• We pay attention to some things

– and therefore we do NOT pay
attention to others

– Even events that “should be”
obvious will be missed if we are
attending to other things.

Computers focus only on what they are
programmed to look at:
• They are inattentionally blind by

design

With a script, you miss the
same things every time.

10Black Box Software Testing Copyright Kaner © 2006

Time sequence in scripted testing
• Design the test early
• Execute it many times later
• Look for the same things each time

11Black Box Software Testing Copyright Kaner © 2006

Risk profiles evolve over time
Specifying the full set of tests at the start
of the project is an invitation to failure:
• The requirements / specifications are

almost certain to change as the
program evolves

• Different programmers tend to make
different errors. (This is a key part of
the rationale behind the PSP.) A
generic test suite that ignores
authorship will overemphasize some
potential errors while
underemphasizing others.

• The environment in which the
software will run (platform,
competition, user expectations, new
exploits) changes over time.

12Black Box Software Testing Copyright Kaner © 2006

Time sequence in scripted testing

• Design the test early
• Execute it many times later
• Look for the same things each time

• The earlier you design the tests,
the less you understand the
program and its risk profile
– And thus, the less well you

understand what to look at

The scripted approach
means the test stays the
same, even thought the
risk profile is changing.

13Black Box Software Testing Copyright Kaner © 2006

Cognitive sequence in scripted testing

The smart test designer
• who rarely runs the tests

designs the tests for the cheap tester
• who does what the designer says and

looks for what the designer says to
look for

• time and time again
• independently of the risk profile.

This is very cost-effective
• if the program has no bugs (or only

bugs that are clearly covered in the
script)

But what if your program has
unexpected bugs?

Who is in a better
position to spot

changes in risk or to
notice new variables

to look at?

14Black Box Software Testing Copyright Kaner © 2006

Analogy to Manufacturing QC
• Scripting makes a lot of sense

because we have:
– Fixed design
– Well understood risks
– The same set of errors appear on

a statistically understood basis
– Test for the same things on each

instance of the product
A suite of regression tests

becomes a pool of tests that
have one thing in common—
the program has passed all

of them. That’s OK for
manufacturing QC. But for

software?

15Black Box Software Testing Copyright Kaner © 2006

Analogy to Design QC
• The difference between

manufacturing defects and design
defects is that:
– A manufacturing defect appears in

an individual instance of the
product

– A design defect appears in every
instance of the product.

• The challenge is to find new design
errors, not to look over and over
and over again for the same design
error

Software testing is
assessment of a design, not

of the quality of
manufacture of the copy.

16Black Box Software Testing Copyright Kaner © 2006

Manufacturing versus services
Peter Drucker, Managing in the Next
Society, stresses that we should
manufacture remotely but provide services
locally.
The local service provider is more readily
available, more responsive, and more able
to understand what is needed.
Most software engineering standards (such
as the DoD and IEEE standards) were
heavily influenced by contracting firms—
outsourcers.
If you choose to outsource development,
of course you should change your
practices to make them look as much like
manufacturing as possible.
But is the goal to support outsourcing?

Unless you are the
outsource service

provider, scripting is
probably an industry

worst practice for design
QC.

17Black Box Software Testing Copyright Kaner © 2006

What we need for design…
Is a constantly evolving set of tests
• That exercise the software in new

ways (new combinations of features
and data)

• So that we get our choice of
– broader coverage of the infinite

space of possibilities
> adapting as we recognize new

classes of possibilities
– and sharper focus

> on risks or issues that we
decide are of critical interest
today.

For THAT
we do

exploratory testing

18Black Box Software Testing Copyright Kaner © 2006

The Nature of
Testing

19Black Box Software Testing Copyright Kaner © 2006

Testing is like CSI

MANY tools, procedures, MANY tools, procedures,
sources of evidence.sources of evidence.

• Tools and procedures
don't define an
investigation or its
goals.

• There is too much
evidence to test, tools
are often expensive, so
investigators must
exercise judgment.

• The investigator must
pick what to study, and
how, in order to reveal
the most needed
information.

20Black Box Software Testing Copyright Kaner © 2006

Imagine …
Imagine crime scene investigators
• (real investigators of real crime

scenes)
• following a script.

How effective do you think they would
be?

21Black Box Software Testing Copyright Kaner © 2006

Testing is always done within a context
• We test in the face of harsh constraints

– Complete testing is impossible

– Project schedules and budget are finite

– Skills of the testing group are limited

• Testing might be done before, during or after a
release.

• Improvement of product or process might or
might not be an objective of testing.

• We test on behalf of stakeholders

– Project manager, marketing manager,
customer, programmer, competitor,
attorney

– Which stakeholder(s) this time?

> What information are they interested in?

> What risks do they want to mitigate?

As service providers, it is
our task to learn (or

figure out) what services
our clients want or need

this time, and under
these circumstances.

22Black Box Software Testing Copyright Kaner © 2006

Examples of important context factors
• Who are the stakeholders with

influence
• What are the goals and quality

criteria for the project
• What skills and resources are

available to the project
• What is in the product
• How it could fail
• Potential consequences of

potential failures
• Who might care about which

consequence of what failure
• How to trigger a fault that

generates a failure we're seeking
• How to recognize failure
• How to decide what result

variables to attend to

• How to decide what other result
variables to attend to in the event
of intermittent failure

• How to troubleshoot and simplify
a failure, so as to better
• motivate a stakeholder who

might advocate for a fix
• enable a fixer to identify and

stomp the bug more quickly
• How to expose, and who to

expose to, undelivered benefits,
unsatisfied implications, traps, and
missed opportunities.

23Black Box Software Testing Copyright Kaner © 2006

Testing is always a search for information

• Find important bugs, to get them fixed
• Assess the quality of the product
• Help managers make release decisions
• Block premature product releases
• Help predict and control product support costs
• Check interoperability with other products
• Find safe scenarios for use of the product
• Assess conformance to specifications
• Certify the product meets a particular standard
• Ensure the testing process meets accountability

standards
• Minimize the risk of safety-related lawsuits
• Help clients improve product quality & testability
• Help clients improve their processes
• Evaluate the product for a third party

Different objectives
require different
testing tools and

strategies and will
yield different tests,

different test
documentation and

different test results.

24Black Box Software Testing Copyright Kaner © 2006

Ten common black-box test techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High-volume automated testing

For more details, see the lecture on test design.

We pick the technique
that provides the best set
of attributes, given the

information objective and
the context.

25Black Box Software Testing Copyright Kaner © 2006

Test attributes
• Power: If a problem exists, the test will reveal it
• Valid: If the test reveals a problem, it is a genuine problem
• Value: Reveals things your clients want to learn
• Credible: Client will believe people will do what’s done in this test
• Motivating: Client will want to fix problems exposed by this test
• Representative: of events most likely to be encountered by the

user (xref: Musa’s Software Reliability Engineering)
• Non-redundant: Represents a larger set that address the same risk
• Performable: Test can be performed as designed.
• Maintainable: Easy to update to reflect product changes
• Repeatable: Easy and inexpensive to reuse the test
• Potential disconfirmation: Critical case for proving / disproving a

key assumption or relationship (xref Karl Popper, Conjectures &
Refutations)

• Coverage: Exercises product in ways not handled by other tests
• Easy to evaluate
• Supports troubleshooting: Provides useful information for the

debugging programmer
• Appropriately complex: As programs get more stable, you can

use more complex tests to better simulate use by experienced users
• Accountable: You can explain, justify, & prove you ran it.
• Cost: Includes time and effort as well as direct costs.
• Opportunity cost: Developing and performing this test prevents

you from doing other work.

The fundamental
difference

between test
techniques lies in
how much they
emphasize each

attribute.

26Black Box Software Testing Copyright Kaner © 2006

Differences in emphasis: Examples
Domain testing
• Focused on non-redundancy, validity,

power, and variables-coverage. Tests
are typically highly repeatable, simple,
and should be easy to maintain.

• Not focused on representativeness,
credibility, or motivational effect.

Scenario testing
• Focused on validity, complexity,

credibility, and motivational effect.
• Not focused on power, maintainability,

or coverage.

“Not focused” doesn’t
mean, “never is.” It means
that this is a factor that

we don’t treat as critical in
developing or evaluating

this type of test.

27Black Box Software Testing Copyright Kaner © 2006

Quality and errors

Under this view:
• Quality is inherently subjective

– Different stakeholders will
perceive the same product as
having different levels of quality

Quality is value to some person
-- Jerry Weinberg

Testers look for
different things …

… for different
stakeholders

28Black Box Software Testing Copyright Kaner © 2006

Software error
An attribute of a software product
• that reduces its value to a favored

stakeholder
• or increases its value to a disfavored

stakeholder
• without a sufficiently large

countervailing benefit.

An error:
• May or may not be a coding error
• May or may not be a functional error

“A bug is something
that bugs

somebody.”

James Bach

29Black Box Software Testing Copyright Kaner © 2006

Reject the “Not My Job” definition of testing
• Testing is not only about doing tasks

some programmer can imagine for you
or meeting objectives some
programmer wishes on you

– unless that programmer is your primary
stakeholder

• The tester who looks only for coding
errors misses all the other ways in
which a program is of lower quality
than it should be.

• Anything that threatens a product’s
value to a stakeholder with influence
threatens quality in a way important to
the project.

– You might be asked to investigate any
type of threat, including security,
performance, usability, suitability, etc.

Tasks beyond your personal
skill set may still be within

your scope.

30Black Box Software Testing Copyright Kaner © 2006

Software testing
• is an empirical
• technical
• investigation
• conducted to provide stakeholders
• with information
• about the quality
• of the product or service under test

31Black Box Software Testing Copyright Kaner © 2006

The Other
Side of the
Contrast:
Exploring

32Black Box Software Testing Copyright Kaner © 2006

Exploratory software testing
• is a style of software testing
• that emphasizes the personal

freedom and responsibility
• of the individual tester
• to continually optimize the value of

her work
• by treating

– test-related learning,
– test design,
– test execution, and
– test result interpretation

• as mutually supportive activities
• that run in parallel throughout the

project.

33Black Box Software Testing Copyright Kaner © 2006

Time sequence in exploration
In contrast with scripting, we:
• Design the test as needed
• Execute the test at time of design or

reuse it later
• Vary the test as appropriate,

whenever appropriate.
Not scripting doesn’t mean not
preparing:
• We often design support materials in

advance and use them many times
throughout testing, such as
– data sets
– failure mode lists
– combination charts.

Unscripted doesn’t mean
unprepared.

It’s about enabling choice,
not constraining it.

34Black Box Software Testing Copyright Kaner © 2006

Cognitive sequence in exploration
This is the fundamental difference between
exploratory and scripted testing.

• The exploratory tester is
always responsible for
managing the value of her
own time.
– At any point in time, this might

include:

> Reusing old tests

> Creating and running new tests

> Creating test-support artifacts,
such as failure mode lists

> Conducting background research
that can then guide test design

The explorer can do any
combination of learning,
designing, executing and
interpreting at any time.

35Black Box Software Testing Copyright Kaner © 2006

Exploratory testing
• Learning: Anything that can guide us in

what to test, how to test, or how to
recognize a problem.

• Design: “to create, fashion, execute, or
construct according to plan; to conceive
and plan out in the mind” (Websters)
– Designing is not scripting. The

representation of a plan is not the plan.
– Explorers’ designs can be reusable.

• Execution: Doing the test and collecting
the results. Execution can be automated
or manual.

• Interpretation: What do we learn from
program as it performs under our test
– about the product and
– about how we are testing the product?

36Black Box Software Testing Copyright Kaner © 2006

Exploratory
Testing:
Learning

37Black Box Software Testing Copyright Kaner © 2006

Exploratory testing: Learning
• Learning: Anything that can guide

us in what to test, how to test, or
how to recognize a problem, such
as:
– the project context (e.g.,

development objectives,
resources and constraints,
stakeholders with influence),
market forces that drive the
product (competitors, desired
and customary benefits, users),
hardware and software
platforms, and development
history of prior versions and
related products.

– risks, failure history, support
record of this and related
products and how this product
currently behaves and fails.

38Black Box Software Testing Copyright Kaner © 2006

Examples of learning activities
• Study competitive products (how they

work, what they do, what expectations
they create)

• Research the history of this / related
products (design / failures / support)

• Inspect the product under test (and
its data) (create function lists, data
relationship charts, file structures, user
tasks, product benefits, FMEA)

• Question: Identify missing info, imagine
potential sources and potentially revealing
questions (interview users, developers,
and other stakeholders, use reference
materials to supplement answers)

• Review written sources: specifications,
other authoritative documents, culturally
authoritative sources, persuasive sources

• Try out potentially useful tools

39Black Box Software Testing Copyright Kaner © 2006

Examples of learning activities
• Hardware / software platform:

Design and run experiments to
establish lab procedures or polish lab
techniques. Research the
compatibility space of the
hardware/software (see, e.g. Kaner,
Falk, Nguyen’s (Testing Computer
Software) chapter on Printer
Testing).

• Team research: brainstorming or
other group activities to combine and
extend knowledge

• Paired testing: mutual mentoring,
foster diversity in models and
approaches.

40Black Box Software Testing Copyright Kaner © 2006

Examples of learning activities
• Create and apply models: A model is a

simplified representation of a relationship,
process or system. The simplification
makes some aspects of the thing modeled
clearer, more visible, and easier to work
with.

• A model is often an expression of
something we don’t understand in terms of
something we (think we) do understand

• All tests are based on models:

– Many models are implicit

– When the behavior of a program “feels
wrong,” it is clashing with your internal
model of the program (and how it
should behave)

41Black Box Software Testing Copyright Kaner © 2006

What are we modeling?
• A physical process emulated, controlled

or analyzed by software under test
• A business process emulated, controlled

or analyzed by software under test
• Software being emulated, controlled,

communicated with or analyzed by the
software under test

• Device(s) this program will interact with
• The stakeholder community
• The uses / usage patterns of the product
• The transactions that this product

participates in
• The development project
• The user interface of the product
• The objects created by this product

42Black Box Software Testing Copyright Kaner © 2006

What aspects of them are we modeling?
• Capabilities
• Preferences

– Competitive analysis
– Support records

• Focused chronology
– Achievement of a task or life

history of an object or action
• Sequences of actions

– Such as state diagrams or
other sequence diagrams

– Flow of control

• Flow of information
– Such as data flow diagrams or

protocol diagrams or maps
• Interactions / dependencies

– Such as combination charts or
decision trees

– Charts of data dependencies
– Charts of connections of parts of

a system
• Collections

– Such as taxonomies or parallel
lists

• Motives
– Interest analysis
– Who is affected how, by what?

43Black Box Software Testing Copyright Kaner © 2006

What makes these models, models?

• The representation is simpler than
what is modeled: It emphasizes some
aspects of what is modeled while
hiding other aspects

• You can work with the
representation to make descriptions
or predictions about the underlying
subject of the model

• Using the model is easier or more
convenient to work with, or more
likely to lead to new insights than
working with the original.

44Black Box Software Testing Copyright Kaner © 2006

A model of learning

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

This is an adaptation of Anderson/Krathwohl’s learning taxonomy. For a summary and
links, see http://www.satisfice.com/kaner/?p=14

45Black Box Software Testing Copyright Kaner © 2006

Focusing on models
• All tests are based on models

– But any cognitive or perceptual
psychologist will tell you that all
perceptions and all judgments are
based on models
> Most of which are implicit

46Black Box Software Testing Copyright Kaner © 2006

A model of learning

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

This is an adaptation of Anderson/Krathwohl’s learning taxonomy. For a summary and
links, see http://www.satisfice.com/kaner/?p=14

47Black Box Software Testing Copyright Kaner © 2006

Focusing on models
• All tests are based on models

– But any cognitive or perceptual
psychologist will tell you that all
perceptions and all judgments are
based on models
> Most of which are implicit

• So the question is,
– Is it useful to focus on

discovering, evaluating, extending,
and creating models

– Or are we sometimes better off
leaving the models in the
background while we focus on the
things we are modeling?

Do we make ET impractical
if we insist on teaching /
working at a high level of

cognition or expertise?

48Black Box Software Testing Copyright Kaner © 2006

Exploratory
Testing:
Design

49Black Box Software Testing Copyright Kaner © 2006

Exploratory testing: Design
• Learning: Anything that can guide us in what to test, how

to test, or how to recognize a problem.

• Design: “to create, fashion, execute,
or construct according to plan; to
conceive and plan out in the mind”
(Websters)
– Designing is not scripting. The

representation of a plan is not the
plan.

– Explorers’ designs can be reusable.
• Execution: Doing the test and collecting the

results. Execution can be automated or manual.
• Interpretation: What do we learn from program as it

performs under our test
– about the product and
– about how we are testing the product?

50Black Box Software Testing Copyright Kaner © 2006

Examples of design activities

• Map test ideas to FMEA or other lists
of variables, functions, risks, benefits,
tasks, etc.

• Map test techniques to test ideas
• Map tools to test techniques.
• Map staff skills to tools / techniques,

develop training as necessary
• Develop supporting test data
• Develop supporting oracles
• Data capture: notes? Screen/input

capture tool? Log files? Ongoing
automated assessment of test results?

• Charter: Decide what you will work on
and how you will work

51Black Box Software Testing Copyright Kaner © 2006

Design: Challenge of relevance
• The challenge of exploratory testing

is often to take a test idea (especially
potential problem)
– maybe learned from study of

competitor’s product, or support
history, or failure of other
products on this operating system
or written in this programming
language

• And turn the test idea into one or
more tests

How do we map from a test
idea to a test?

52Black Box Software Testing Copyright Kaner © 2006

Design: Challenge of relevance
• We often go from technique to test

– Find all variables, domain test each
– Find all spec paragraphs, make a

relevant test for each
– Find all lines of code, make a set of

tests that collectively includes each
• It is much harder to go from a risk to a

test
– The program will crash?
– The program will have a wild pointer?
– The program will have a memory

leak?
– The program will be hard to use?
– The program will corrupt its

database?

53Black Box Software Testing Copyright Kaner © 2006

How to map from a test idea to
a test?
• I don’t have a general answer.
• Cross-mapping of knowledge is one

of (perhaps the) most difficult
cognitive tasks.
– Ability to do this is often

discussed in terms of “G”
(“general intelligence”, the
hypothetical dominant factor that
underlies IQ scores)

54Black Box Software Testing Copyright Kaner © 2006

How to map from a test idea to
a test?

• When it is not clear how to work
backwards to the relevant test, four tactics
sometimes help:
– Ask someone for help
– Ask Google for help. (Look for

discussions of the type of failure; look
for discussions of different faults and see
what types of failures they yield)

– Review your toolkit of techniques,
searching for a test type with relevant
characteristics

– Turn the failure into a story and
gradually evolve the story into
something you can test from

• There are no guarantees in this, but you
get better at it as you practice, and as you
build a broader inventory of techniques.

55Black Box Software Testing Copyright Kaner © 2006

Design: Challenge of relevance
If you don’t have a technique at hand, you
will often have to invent your own.
Or at least, polish a test idea into a good
test.
This is especially true with stories that give
an initial approach to a risk but need work.
Example:

Joe bought a smart refrigerator that
tracks items stored in the fridge and
prints out grocery shopping lists. One
day, Joe asked for a shopping list for his
usual meals in their usual quantities and
the fridge crashed with an unintelligible
error message.

How would you test for this bug?

56Black Box Software Testing Copyright Kaner © 2006

Design: Challenge of relevance:
Evolving the test case from the story
• We start with Joe and his failure.
• We generate hypotheses for situations

that might lead to a failure like that:
– Wild pointer
– Stack overflow
– Unusual timing condition
– Unusual collection of things in the

fridge
• Refine each hypothesis into harsher and

harsher tests until we’re satisfied that if
the program passes this series of tests,
the hypothesis driving the tests is
probably the wrong one.

57Black Box Software Testing Copyright Kaner © 2006

Design: Challenge of relevance:
Evolving the test case from the story
To achieve this, we might:
• Look for a potentially promising

technique
• Work up a starting example of this

type of test that appears relevant to
the failure under consideration

• Try out the test
– If you get the failure this easily, stop
– Otherwise, polish the test

> Consider the strengths of this
class of test

> Stretch the test on the attributes
not normally emphasized by this
technique.

For more on
developing testing
stories, see the

lectures on scenario
testing.

58Black Box Software Testing Copyright Kaner © 2006

Exploratory
Testing:

Execution

59Black Box Software Testing Copyright Kaner © 2006

Exploratory testing: Execution
• Learning: Anything that can guide us in what to

test, how to test, or how to recognize a problem.
• Design: “to create, fashion, execute, or construct

according to plan; to conceive and plan out in the
mind” (Websters)
– Designing is not scripting. The representation of

a plan is not the plan.
– Explorers’ designs can be reusable.

• Execution: Doing the test and
collecting the results.
Execution can be automated or
manual.

• Interpretation: What do we learn from program
as it performs under our test
– about the product and
– about how we are testing the product?

60Black Box Software Testing Copyright Kaner © 2006

Examples of execution activities
• Configure the product under test
• Branch / backtrack: Let yourself be

productively distracted from one
course of action in order to produce
an unanticipated new idea.

• Alternate among different activities
or perspectives to create or relieve
productive tension

• Pair testing: work and think with
another person on the same problem

• Vary activities and foci of attention
• Create and debug an automated

series of tests
• Run and monitor the execution of an

automated series of tests

61Black Box Software Testing Copyright Kaner © 2006

Scripted execution

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

62Black Box Software Testing Copyright Kaner © 2006

Exploratory execution

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

63Black Box Software Testing Copyright Kaner © 2006

Exploratory
Testing:

Interpretation

64Black Box Software Testing Copyright Kaner © 2006

Exploratory testing: Interpreting
• Learning: Anything that can guide us in what to

test, how to test, or how to recognize a problem.
• Design: “to create, fashion, execute, or construct

according to plan; to conceive and plan out in the
mind” (Websters)
– Designing is not scripting. The representation of

a plan is not the plan.
– Explorers’ designs can be reusable.

• Execution: Doing the test and collecting the
results. Execution can be automated or manual.

• Interpretation: What do we learn
from program as it performs under
our test
– about the product and
– about how we are testing the

product?

65Black Box Software Testing Copyright Kaner © 2006

Interpretation activities
• Part of interpreting the behavior

exposed by a test is determining
whether the program passed or failed
the test.

• A mechanism for determining whether
a program passed or failed a test is
called an oracle. We discuss oracles in
detail, on video and in slides

• Oracles are heuristic: they are
incomplete and they are fallible. One of
the key interpretation activities is
determining which oracle is useful for a
given test or test result

66Black Box Software Testing Copyright Kaner © 2006

Interpretation: Oracle heuristics
Consistent within Product: Behavior
consistent with behavior of comparable
functions or functional patterns within
the product.

Consistent with Comparable
Products: Behavior consistent with
behavior of similar functions in
comparable products.

Consistent with a Model’s
Predictions: Behavior consistent with
expectations derived from a model.

Consistent with History: Present
behavior consistent with past behavior.

For more on oracles,
see the introductory
lectures on oracles.

67Black Box Software Testing Copyright Kaner © 2006

Interpretation: Oracle heuristics
Consistent with our Image:
Behavior consistent with an image that
the organization wants to project.

Consistent with Claims: Behavior
consistent with documentation or ads.

Consistent with Specifications or
Regulations: Behavior consistent with
claims that must be met.

Consistent with User’s
Expectations: Behavior consistent
with what we think users want.

Consistent with Purpose: Behavior
consistent with apparent purpose.

68Black Box Software Testing Copyright Kaner © 2006

Another set of activity descriptions
• Jon Bach, Mike Kelly, and James Bach are

working on a broad listing / tutorial of
ET activities. See Exploratory Testing
Dynamics at
http://www.quardev.com/whitepapers.html

• We reviewed preliminary drafts at the
Exploratory Testing Research Summit
(spring 2006) and Consultants Camp
2006 (August), looking specifically at
teaching issues.

• This short paper handout provides an
outline for what should be a 3-4 day
course. It’s a stunningly rich set of skills.

• In this abbreviated form, the lists are
particularly useful for audit and
mentoring purposes, to highlight gaps in
your test activities or those of someone
whose work you are evaluating.

69Black Box Software Testing Copyright Kaner © 2006

Exploratory
Testing
After 23

Years

70Black Box Software Testing Copyright Kaner © 2006

Exploratory testing after 23 years

Areas of ongoing
concern

Areas of
progress

Areas of
controversy

Areas of
agreement

71Black Box Software Testing Copyright Kaner © 2006

Areas of agreement*
• Definitions
• Everyone does ET to some degree
• ET is an approach, not a technique
• ET is the response (the antithesis) to

scripting
– But a piece of work can be a blend,

to some degree exploratory and to
some degree scripted

* Agreement among the people who agree
with me (many of whom are sources of my
ideas). This is a subset of the population of
ET-thinkers who I respect, and a smaller
subset of the pool of testers who feel
qualified to write about ET. (YMMV)

72Black Box Software Testing Copyright Kaner © 2006

Exploratory testing after 23 years

Areas of ongoing
concern

Areas of
progress

Areas of
controversy

Areas of
agreement

73Black Box Software Testing Copyright Kaner © 2006

Areas of controversy
ET is not quicktesting
• A quicktest (or an “attack”) is a cheap

test that requires little preparation,
knowledge or time to perform.

• A quicktest is a technique that starts
from a theory of error (how the program
could be broken) and generates tests
optimized for errors of that type.
– Example: Boundary analysis (domain

testing) is optimized for
misclassification errors (IF A<5
miscoded as IF A<=5)

• Quicktesting may be more like scripted
testing or more like ET
– depends on the mindset of the tester.

To learn more about
quicktests, see the risk-
based testing lectures.

74Black Box Software Testing Copyright Kaner © 2006

Areas of controversy
• ET is not quicktesting

•ET is not only functional testing:
• Some programmers define testing narrowly

– Agile ™ system testing focused around
customer stories—not a good vehicle
for parafunctional attributes

– Parafunctional work is dismissed as
peripheral

• If quality is value to the stakeholder
– and if value is driven by usability,

security, performance, aesthetics, (etc.)
– then testers should investigate these

aspects of the product.

ET is about learning and
choice, not about

constraints on scope. If
our stakeholders need the
information, and we can
provide the information,

it’s in our scope.

75Black Box Software Testing Copyright Kaner © 2006

Areas of controversy
•ET is not quicktesting

•ET is not only functional testing

•ET can involve tools of any
kind and can be as computer-
assisted as anything else we
would call “automated”
• Along with

– traditional “test automation” tools,
• Emerging tool support for ET such as

– Test Explorer
– BBTest Assistant

• and better thought support tools
– Like Mind Manager and Inspiration
– Qualitative analysis tools like Atlas.ti

ET is about learning and
choice, not about

constraints on technology.

76Black Box Software Testing Copyright Kaner © 2006

The Telenova stack failure
Telenova Station Set 1. Integrated voice and data.
108 voice features, 110 data features. 1984.

77Black Box Software Testing Copyright Kaner © 2006

The Telenova stack failure

Context-sensitive
display

10-deep hold queue
10-deep wait queue

78Black Box Software Testing Copyright Kaner © 2006

The Telenova stack failure
A simplified state diagram showing the bug

Caller
hung up

Idle

Connected

On Hold

Ringing

You
hung up

79Black Box Software Testing Copyright Kaner © 2006

The underlying bug:
• Beta customer (stock broker) had random failures

• Could be frequent at peak times

• An individual phone would crash and reboot. Others
crashed while the first was rebooting

• One busy day, service was disrupted all afternoon

• We were mystified:

• All individual functions worked

• We had tested all lines and branches.

• Ultimately, we found the bug in the hold queue

• Up to 10 held calls, each adds record to the stack

• Initially, the system checked stack whenever it added
or removed a call, but this took too much system
time. We dropped the checks and added:

– Stack has room for 20 calls (just in case)

– Stack reset (forced empty) when we knew it
should be empty

• Couldn’t overflow the stack in the lab because we
didn’t know how to hold more than 10 calls.

80Black Box Software Testing Copyright Kaner © 2006

The magic error

Ringing

Idle

Connected

On Hold

Caller
hung up

You
hung up

81Black Box Software Testing Copyright Kaner © 2006

Telenova stack failure

Having found and fixed
the hold-stack bug,
should we assume

we’ve taken care of the problem
or that if there’s one long-sequence bug,

there will be more?

Hmmm…
If you kill a cockroach in your kitchen,

do you assume
you’ve killed the last bug?

Or do you call the exterminator?

82Black Box Software Testing Copyright Kaner © 2006

Simulator with probes
• Telenova (*) created a simulator

•generated long chains of random events,
emulating input to the system’s 100 phones

•could be biased, to generate more holds,
more forwards, more conferences, etc.

• Programmers selectively added probes (non-
crashing asserts that printed alerts to a log)

•can’t probe everything b/c of timing impact

• After each run, programmers and testers
tried to replicate / fix anything that triggered a
message

• When logs ran almost clean, shifted focus to
next group of features.

• Exposed lots of bugs

This testing is automated
glass box, but a classic
example of exploratory

testing.

(*) By the time this was implemented, I had joined Electronic Arts.

83Black Box Software Testing Copyright Kaner © 2006

Areas of controversy

• ET is not quicktesting
• ET is not only functional testing
• ET can involve tools of any kind and

can be as computer-assisted as
anything else we would call
“automated”

• ET is not focused primarily
around test execution
– I helped create this confusion by

initially talking about ET as a test
technique.

84Black Box Software Testing Copyright Kaner © 2006

Controversy: ET is not a technique
In the 1980’s and early 1990’s, I
distinguished between
• The evolutionary approach to

software testing
• The exploratory testing technique(s),

such as:
– Guerilla raids
– Taxonomy-based testing and

auditing
– Familiarization testing (e.g. user

manual conformance tests)
– Scenario tests

85Black Box Software Testing Copyright Kaner © 2006

Controversy: ET is not a technique
1999 Los Altos Workshop on Software
Testing #7 on Exploratory Testing
• James Tierney presented

observations on MS “supertesters”
indicating their strength is heavily
correlated with social interactions in
the development group (they
translate what they learn from the
team into tests)

• Bob Johnson and I presented a list of
“styles of exploration” (a catalog of
what we now call “quicktests”)

• James Bach, Elisabeth Hendrickson,
Harry Robinson, and Melora Svoboda
gave presentations on models to
drive exploratory test design

86Black Box Software Testing Copyright Kaner © 2006

Controversy: ET is not a technique
At end of LAWST 7, David Gelperin
concluded he didn’t understand what is
unique about “exploratory” testing. Our
presentations all described approaches
to design and execution of tests that he
considered normal testing. What was
the difference?
He had a point:
• Can you do domain testing in an

exploratory way?
– Of course

• Specification-based testing?
– Sure

• Stress testing? Scenario testing?
Model-based testing?
– Yes, yes, yes

Is there any test
technique that you
cannot do in an
exploratory way?

87Black Box Software Testing Copyright Kaner © 2006

Controversy: ET is not a technique
WHET #1 and #2 – James Bach demonstrated
that activities we undertake to learn about the
product (in order to test it) are inherent in
exploration.

• Of course they are

• But this became the death knell for the idea
of ET as a technique

• ET is a way of testing
– We learn about the product in its

market and technological space (keep
learning until the end of the project)

– We take advantage of what we learn to
design better tests and interpret results
more sagely

– We run the tests, shifting our focus as
we learn more, and learn from the
results.

88Black Box Software Testing Copyright Kaner © 2006

Areas of controversy
• ET is not quicktesting
• ET is not only functional testing
• ET can involve tools of any kind and

can be as computer-assisted as anything
else we would call “automated”

• ET is not focused primarily around test
execution

• ET can involve complex tests
that require significant
preparation
– Scenario testing is the classic

example
– To the extent that scenarios help us

understand the design (and its
value), we learn most of what we’ll
learn in the development and first
execution. Why keep them?

ET is not just spontaneous
testing at the keyboard.

89Black Box Software Testing Copyright Kaner © 2006

Areas of controversy
• ET is not quicktesting
• ET is not only functional testing
• ET can involve tools of any kind and

can be as computer-assisted as anything
else we would call “automated”

• ET is not focused primarily around test
execution

• ET can involve complex tests that
require significant preparation

• ET is not exclusively black
box
– “Experimental program analysis: A

new paradigm for program analysis”
by Joseph Ruthruff (Doctoral
symposium presentation at
International Conference on
Software Engineering, 2006)

ET is not just spontaneous
testing at the keyboard.

90Black Box Software Testing Copyright Kaner © 2006

Exploratory testing after 23 years

Areas of ongoing
concern

Areas of
progress

Areas of
controversy

Areas of
agreement

91Black Box Software Testing Copyright Kaner © 2006

Areas of progress

• We know a lot more
about quicktests
– Well documented examples from

Whittaker’s How to Break… series
and Hendrickson’s and Bach’s
courses

92Black Box Software Testing Copyright Kaner © 2006

Areas of progress
• We know a lot more about

quicktests

• We have a better
understanding of the
oracle problem and oracle
heuristics

93Black Box Software Testing Copyright Kaner © 2006

Areas of progress
• We know a lot more about

quicktests
• We have a better understanding of

the oracle problem and oracle
heuristics

• We have growing
understanding of ET in
terms of theories of
learning and cognition

94Black Box Software Testing Copyright Kaner © 2006

Areas of progress
• We know a lot more about quicktests
• We have a better understanding of the oracle

problem and oracle heuristics
• We have growing understanding of ET in

terms of theories of learning and cognition

• We have several guiding models
– We now understand that models are

implicit in all tests
– Failure mode & effects analysis applied

to bug catalogs
– Bach / Bach / Kelly’s activities model
– Satisfice heuristic test strategy model
– State models
– Other ET-supporting models (see

Hendrickson, Bach)

95Black Box Software Testing Copyright Kaner © 2006

Exploratory testing after 23 years

Areas of
ongoing
concern

Areas of
progress

Areas of
controversy

Areas of
agreement

96Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
• Testing is

– more skilled and
cognitively challenging

– more fundamentally
multidisciplinary

– than popular myths
expect For more on psychological

issues in testing, see my
presentation on Software
Testing as a Social Science

www.kaner.com/pdfs/KanerSocialScienceDal.pdf

97Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
• Testing is more skilled and

cognitively challenging,
more fundamentally
multidisciplinary, than
popular myths expect:

• Unskilled testing shows up
more starkly with ET

98Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
Testing is more skilled and cognitively challenging,
more fundamentally multidisciplinary, than popular
myths expect:
Unskilled testing shows up more starkly with ET
• Repetition without realizing it
• Areas missed without intent
• Incorrect perception of depth or coverage
• Tester locks down on a style of testing without

realizing it
• Wasted time due to reinvention of same tests

instead of reuse
• Wasted effort creating test data
• Audit fails because of lack of traceability
• Weak testing because the tester is unskilled and

tests are unreviewed
• Difficult to document the details of what was

done
• May be difficult to replicate a failure
• Hard to coordinate across testers
• Harder to spot a failure.

99Black Box Software Testing Copyright Kaner © 2006

The essence of ET is learning (and learning about learning)

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

100Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
• Testing is more skilled and

cognitively challenging, and more
fundamentally multidisciplinary, than
popular myths expect

• What level of skill, domain
knowledge, intelligence,
testing experience (overall
“strength” in testing) does
exploratory testing
require?
– We are still early in our wrestling

with modeling and implicit models
> How to teach the models
> How to teach how to model

101Black Box Software Testing Copyright Kaner © 2006

The essence of ET is learning

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

102Black Box Software Testing Copyright Kaner © 2006

The essence of ET is learning

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

103Black Box Software Testing Copyright Kaner © 2006

The essence of ET is learning

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

104Black Box Software Testing Copyright Kaner © 2006

The essence of ET is learning (and learning about learning)

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

The individual contributor (tester rather than “test planner” or manager)

105Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
• Testing is more skilled and

cognitively challenging, and more
fundamentally multidisciplinary, than
popular myths expect

• What level of skill, domain
knowledge, intelligence, testing
experience (overall “strength” in
testing) does exploratory testing
require?

• We are just learning how
to assess individual tester
performance

Construct validity (a key
issue in measurement

theory) is still an unknown
concept in Computer Science.

106Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
• Testing is more skilled and cognitively

challenging, and more fundamentally
multidisciplinary, than popular myths
expect

• What level of skill, domain knowledge,
intelligence, testing experience (overall
“strength” in testing) does exploratory
testing require?

• We are just learning how to assess
individual tester performance

• We are just learning how
to track and report status
– Session based testing
– Workflow breakdowns
– Dashboards

107Black Box Software Testing Copyright Kaner © 2006

Areas of ongoing concern
• Testing is more skilled and cognitively

challenging, and more fundamentally
multidisciplinary, than popular myths expect

• What level of skill, domain knowledge,
intelligence, testing experience (overall
“strength” in testing) does exploratory
testing require?

• We are just learning how to assess individual
tester performance

• We are just learning how to track and
report status

• We don’t yet have a good
standard tool suite
– Tools guide thinking
– Hendrickson, Bach, others have made

lots of suggestions

108Black Box Software Testing Copyright Kaner © 2006

Closing notes
• If you want to attack any approach to

testing as unskilled, attack scripted
testing

• If you want to hammer any testing
approach on coverage, look at the
fools who think they have tested a
spec or requirements document when
they have one test case per spec item,
or code with one test per statement /
branch / basis path.

• Testing is a skilled, fundamentally
multidisciplinary area of work.

• Exploratory testing brings to the fore
the need to adapt to the changing
project with the information available.

