
1Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Copyright © 2020 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and Rebecca Fiedler, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Black Box Software Test Design
Lecture 1
A Survey of Test Techniques

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

2Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The practices recommended and discussed in this course are useful for an introduction to testing, but more experienced testers

will adopt additional practices.

I am writing this course with the mass-market software development industry in mind. Mission-critical and life-critical software

development efforts involve specific and rigorous procedures that are not described in this course. Some of the BBST-series

courses include some legal information, but you are not my legal client. I do not provide legal advice in the notes or in the

course.

If you ask a BBST instructor a question about a specific situation, the instructor might use your question as a teaching tool, and

answer it in a way that s/he believes would ”normally” be true but such an answer may be inappropriate for your particular

situation or incorrect in your jurisdiction. Neither I nor any instructor in the BBST series can accept any responsibility for actions

that you might take in response to comments about technology or law made in this course. If you need legal advice, please

consult your own attorney.

Notice

3Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The BBST lectures evolved out of practitioner-focused courses co-authored by Kaner & Hung Quoc Nguyen and by Kaner & Doug

Hoffman, which then merged with James Bach’s and Michael Bolton’s Rapid Software Testing (RST) courses. The online

adaptation of BBST was designed primarily by Rebecca L. Fiedler. Starting in 2000, the course evolved from a

practitioner-focused course through academic teaching and research largely funded by the National Science Foundation.

The Association for Software Testing served (and serves) as our learning lab for practitioner courses. We evolved the 4-week

structure with AST. We could not have created this series without AST’s collaboration. Since 2014, Altom has been offering the

course commercially. Starting with 2019, Altom has been maintaining and updating the course materials.

Many Thanks...

4Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

We also thank Scott Allman, Jon Bach, Scott Barber, Bernie Berger, Ajay Bhagwat, Rex Black, Michael Bolton, Fiona Charles, Jack

Falk, Elizabeth Hendrickson, Kathy Iberle, Bob Johnson, Karen Johnson, Brian Lawrence, Brian Marick, John McConda, Greg

McNelly, Melora Svoboda, dozens of participants in the Los Altos Workshops on Software Testing, the Software Test Managers’

Roundtable, the Workshops on Heuristic & Exploratory Techniques, the Workshops on Teaching Software Testing, the Austin

Workshops on Test Automation and the Toronto Workshops on Software Testing and students in AST and Altom courses for

critically reviewing materials from the perspective of experienced practitioners.

We also thank the many students and co-instructors at Florida Tech, who helped us evolve the academic versions of this course,

especially Pushpa Bhallamudi, Walter P. Bond, Tim Coulter, Sabrina Fay, Anand Gopalakrishnan, Ajay Jha, Alan Jorgensen,

Kishore Kattamuri, Pat McGee, Sowmya Padmanabhan, Andy Tinkham, and Giri Vijayaraghavan.

We also thank all instructors, practitioners and Altom employees who contribute to updating and developing new content for

this course series, especially Ancuța Bodnărescu, Alexandra Casapu, Oana Casapu, Ru Cindrea, Gabriel Dobrițescu, Zoltán

Molnár, Ray Oei, and Dolores Pente.

Many Thanks...

5Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Understand key testing challenges that demand thoughtful tradeoffs by test

designers and managers

● Develop skills with several test techniques

● Choose effective techniques for a given objective under your constraints

● Improve the critical thinking and rapid learning skills that underlie good testing

● Communicate your findings effectively

● Work effectively online with remote collaborators

● Plan investments (in documentation, tools, and process improvement) to meet

your actual needs

● Create work products that you can use in job interviews to demonstrate testing

skill

BBST Learning Objectives

6Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

This is an introductory survey of test design. The course introduces students to:

● many techniques at a superficial level (what the technique is),

● a few techniques at a practical level (how to do it),

● ways to mentally organize this collection,

● using the Heuristic Test Strategy Model for test planning and design, and

● using concept mapping tools for test planning.

We don't have time to develop your skills in these techniques. Our next courses will

focus on one technique each. THESE will build deeper knowledge and skill, technique

by technique.

Course Objectives

Any of these

techniques can be

used in a scripted

way or an

exploratory way.

7Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Changing Emphases Across the Courses

Foundations Bug Advocacy Test Design Domain Testing

Greatest
Emphasis

Course Skills Testing Skills Testing Knowledge Testing Skills

Testing Knowledge Testing Knowledge Learning Skills Testing Knowledge

Social Skills Social Skills Testing Skills Learning Skills

Computing
Fundamentals

Learning Skills Course Skills
Computing

Fundamentals

Learning Skills Course Skills Social Skills Social Skills

Least
Emphasis

Testing Skills
Computing

Fundamentals
Computing

Fundamentals
Course Skills

8Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Changing Emphases

Course Skills Working effectively in online courses. Taking tests. Managing your
time.

Social Skills Working together in groups. Peer reviews. Using collaboration tools
(e.g. wikis).

Learning Skills Using lectures, slides, and readings effectively. Searching for
supplementary information. Using these materials to form and defend
your own opinion.

Testing
Knowledge

Definitions. Facts and concepts of testing. Structures for organizing
testing knowledge.

Testing Skills How to actually do things. Getting better (through practice and
feedback) at actually doing them.

Computing
Fundamentals

Facts and concepts of computer science.

9Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

 1. Function testing & tours
A taxonomy of test techniques

Course Overview: Fundamental Topics

 2. Risk-based testing, failure mode analysis and quicktests
Testing strategy. Introducing the Heuristic Test Strategy Model

 3. Specification-based testing
Work on your assignment

 4. Use cases and scenarios
Comparatively evaluating techniques.

 5. Domain testing: traditional and risk-based
When you enter data, any part of the program that uses that data is a risk. Are you designing for that?

 6. Testing combinations of independent and interacting variables.
Combinatorial, scenario-based, risk-based and logical-implication analyses of multiple variables.

10Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Required

● Kelly, M.D. (2005). “Taking A Tour Through Test Country”,
http://testingeducation.org/BBST/testdesign/Kelly_Taking_a_Tour_Through_Test_Country.pdf

● Kaner, C., Bach, J., & Pettichord, B. (2001). Lessons Learned in Software Testing: Chapter 3: Test Techniques,
http://media.techtarget.com/searchSoftwareQuality/downloads/Lessons_Learned_in_SW_testingCh3.pdf

Useful to skim

● Bolton, M. (2009). “Of Testing Tours and Dashboards”,
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards

● Bolton, M. (2006). “The Factors of Function Testing”,
http://www.developsense.com/articles/2006-07-TheFactorsOfFunctionTesting.pdf

● Copeland, L. (2004). A Practitioner's Guide to Software Test Design. Artech House

● Kelly, M.D. (2005). “Touring Heuristic”,
https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

Today’s Readings

http://testingeducation.org/BBST/testdesign/Kelly_Taking_a_Tour_Through_Test_Country.pdf
http://media.techtarget.com/searchSoftwareQuality/downloads/Lessons_Learned_in_SW_testingCh3.pdf
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards
http://www.developsense.com/articles/2006-07-TheFactorsOfFunctionTesting.pdf
https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

11Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Functions might also be called:

● Features

● Commands

● Capabilities

In function testing, testers

● focus testing on each function (or subfunction), one by one.

Function Testing

A function is something the product can do.

12Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Testers don't come to a program knowing everything about it. They

have to learn what they're testing.

To discover a product's functions:

● Check specifications or the draft user manual

● Walk the user interface

● Try commands at the command line

● Search the program or resource files for command names

Identifying Functions

13Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Here's a demonstration of walking the user interface, with

OpenOffice Writer. The goal is to find every feature that you can

reach through the user interface. To do that, we'll:

● Pull down menus and bring up dialogs

● Look for state-dependent dialogs or features

● Right-click everywhere to bring up context-sensitive menus

● Look for option settings that reveal new features

● And so on

This is also called a feature tour.

Walking the User Interface

A feature tour might

also include looking at

documentation, reverse

engineering the product

and any other activities

that could help you

quickly catalog the

program's features.

14Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The Demonstration...

15Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● That was an example of a tour. The theme I just illustrated focused on features.

● James Bach, Elisabeth Hendrickson and Michael Kelly started describing the use

of a variety of tours in exploratory testing in the 1990's

○ Bolton, M. (2009). Of testing tours and dashboards.

http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards

○ Kelly, M.D. (2005). Touring Heuristic.

https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

● Think of touring as functionally similar to a structured brainstorming

approach--excellent for surfacing a collection of ideas, that you can then explore

in depth, one at a time.

Tours and Exploration

A tour is an exploration of a product that is organized around a theme.

http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards
https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

16Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The core of exploration is learning. Touring is one of

several starting points for exploratory testing:

● You might discover bugs (or other quality-relevant

information) during a tour.

● You might discover bugs when you follow up a

tour with a deeper set of tests guided by your tour

results.

Explaining why he finds tours

valuable, Michael Bolton writes,

”One of the challenges I've

encountered in early exploration is

managing focus - loggin or noting

bugs without investigating them;

recognizing risks or vulnerabilities

and not stopping, but noting them

instead. Screen recording tools can

backstop notes, too.”

Tours and Exploration

17Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● The result of a tour is an inventory: a list of things of the type

that we're interested in.

● A ”complete” tour yields an exhaustive list. (Most tours are

incomplete but useful)

● Later, you can test everything on the list, to some intentional

degree of thoroughness.

● In our example, we created an inventory of the program's

functions. Testing from that inventory is called function

testing.

A Tour Yields an Inventory

18Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Function testing illustrates a coverage-driven test technique.

Start with an inventory of functions, and organize your testing

to achieve any level of function coverage that you choose.

● Given an inventory of error messages, you could organize your

testing around error-message coverage.

● Given an inventory of variables, you could organize your

testing around variable coverage.

Touring Lays the Groundwork
for Coverage-Oriented Testing

Coverage measures

how much of a certain

type of testing we've

completed, compared

to the total number of

possible tests of this

type.

19Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Testers can tour together:

● Touring in pairs is often more productive than touring for twice

as long, alone.

● New testers will benefit from a tour guide.

Testers can split tours across many sessions:

● There is no need to complete a tour in one day or one week.

● It's OK to tour for an hour or two, do some other tasks, then

pick up the tour a few days later.

Suggestions for Touring

20Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

James Bach, Elisabeth Hendrickson and Michael Kelly have described

several types of tours:

● Bolton, M. (2009). “Of testing tours and dashboards”.

developsense.com/blog/2009/04/of-testing-tours-and-dashboards

● Kelly, M.D. (2005). “Touring Heuristic”,
www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

There Are Many Types of Tours

http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards
https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

21Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● This is what I've been calling the function tour.

● The tour goal: Find out what the program can do. Find all the

features, controls and command line options.

Feature Tour

22Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Some people do sub-tours:

● Menus and Windows Tour: Find all the menus (main and

context menus), menu items, windows, toolbars, icons, and

other controls.

Feature Tour
For touring menus and windows in Windows, Michael Bolton recommends Resource Hunter at
http://www.boilsoft.com/rchunter.html

Feature Tour

http://www.boilsoft.com/rchunter.html

23Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Some people do sub-tours:

● Mouse and Keyboard Tour: Find all the things you can do

with a mouse and keyboard. Click on everything. Try all the

keys on the keyboard, including F-keys, Enter, Tab, Escape,

Backspace and combinations with Shift, Ctrl, and Alt.

Feature Tour

24Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A transaction is a complete task.

● For example, go to the store, buy something (including paying

for it) is a complete task.

● A transaction typically involves a sequence of many functions.

● There is no bright line between transactions and features, but

the mindset of the tester doing the tour is a bit different.

○ What can I do with this program? (transaction)

○ What are the program's commands? (feature/function)

Transactions Tour

25Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● List every error message. Ask programmers for a list, and look

for a text file that stores program strings (including error

messages).

○ Process Explorer, a System Internals tool available on

Microsoft's website, includes functions for dumping a

program's strings.

○ Also handy: Resource Hunter

● List every condition that you think should throw an error

message.

○ Highlight cases that should yield an error message but do not.

Error Message Tour

http://www.boilsoft.com/rchunter.html

26Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What can you can change in the application?

● Anything you can change is a variable. Find them all.

● What values can each variable take?

● What are the variables' subranges and subrange-boundaries?

● Some variables (such as many variables that are set with check

boxes) enable, disable or constrain the values of other

variables. What changes in one variable will cause changes in

other variables?

Variables Tour

27Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What are the data elements of the

application?

● Some of these are variables.

● Others might be constants, or

information the program reads from

disk or obtains from other

applications.

Data Tour

The variables tour and the data tour are

obviously related, but their emphasis is

different. The variables tour identifies the

variables in the program. The data tour

considers what values are fed to those

variables and where those values come

from.

28Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What samples are available?

● Consider data from using or testing a previous version of this

application, or an application that should interoperate with

this one.

● One caution: How will you determine whether the program

handles these data correctly?

Sample Data Tour

29Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What files are used by this program and where are they?

● What's in the folder where the program's .EXE file is found?

What other folders contain application data? Check out your

system's directory structure, including folders that might be

available only to the system administrator.

● Look for READMEs, help files, log files, installation scripts, .cfg,

.ini, .rc files. Look at the names of .DLLs, and extrapolate on

the functions that they might contain or the ways in which

their absence might undermine the application.

File Tour

30Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What is included in the complete product?

● Code

● Data

● Interfaces

● Documentation

● Hardware

○ Security devices required for access

○ Cables

● Packaging

● Associated websites or online services

● Anything you can test...

Structure Tour

31Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

”An operational mode is a formal characterization of the status of one or more internal data objects that affect system behavior.”

● In practice, in black-box state-model based testing, an operational mode is a visible state of the program.

● Identifying all the operational modes (states) is one of the core tasks of state-model based testing, followed by identifying

the transitions (from State X, you can go directly to States Y and Z) and then testing all the transitions.

See:

● Whittaker, J.A. (1997). Stochastic software testing. Annals of Software Engineering, p. 120

● Jorgensen, A.A. (1999). Software Design Based on Operational Modes. Doctoral Dissertation, Florida Institute of Technology.
https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf

● El-Far, I. K. (1999), Automated Construction of Software Behavior Models, Masters Thesis, Florida Institute of Technology.

For excellent introductions to state-model based testing, see Harry Robinson's papers:

● (1999a). “Finite state model-based testing on a shoestring”. http://www.geocities.ws/harry_robinson_testing/shoestring.htm

● (1999b). “Graph theory techniques in model-based testing. International Conference on Testing Computer Software”
http://www.geocities.ws/harry_robinson_testing/graph_theory.htm

● Model-Based Testing Home Page https://www.oocities.org/model_based_testing/

Operational Modes Tour

https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf
http://www.geocities.ws/harry_robinson_testing/shoestring.htm
http://www.geocities.ws/harry_robinson_testing/graph_theory.htm
https://www.oocities.org/model_based_testing/

32Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A sequence (or a sub-path) is a set of actions that take you from one state to another.

For example:

 Open a document

● Print the document

● Change the document

● Start to save the document

This is one sequence that takes you to the Save-Document state. Several others could

take you to the same state.

● What are they?

● Which ones are interesting?

Sequence Tour

As we use the term

here, a sequence is a

cognitively coherent

path through the

program (someone

would do this on

purpose) that might

involve many state

transitions.

33Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What claims does the vendor make about the product?

● Find published claims in manuals, help, tutorials, and

advertisements.

● Find unpublished claims in internal specifications and memos

that make promises or define the product's intent.

Claims Tour

34Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What are the benefits of this application?

● Your task is not to find bugs; it is to discover what the program

will provide (what's valuable about this program) once it is fully

working.

● This is a useful starting point for testers. You can communicate

much more effectively about a product if you understand what

it should be good for.

Benefits Tour

35Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What is the market context for this product?

● Who are the competitors?

● Among the competitors, are there cheaper ones? Less capable

ones? More capable? More expensive?

● Why would someone buy this one instead of the other ones?

Why would they buy the other ones?

Market Context Tour

36Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What would users do with this program?

● Imagine five different types of users of this application.

● What would they do with it?

● What information would they want from it?

● How would they expect its features to work?

User Tour

37Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Consider an object in the system. (For example, consider a checking

account in a banking application.)

● When and how can the program create it?

● How can the program change it?

● How is it used?

● What does it interact with?

● When does the program deactivate, discard or destroy it?

● After the object is terminated, is any record kept of it, for future

reference?

You can create many scenarios to

reflect different potential life histories

for the same types of objects.

See Kaner (2003), “An Introduction to

Scenario Testing” for discussion of life

histories and 15 other themes for

creating scenarios, each of which

could yield its own type of tour.

http://www.kaner.com/pdfs/

ScenarioIntroVer4.pdf

Life History Tour

http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

38Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● What program settings can you change?

● Which will persist if you exit the program and reopen it?

● What operating system settings will affect application

performance?

Configuration Tour

39Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What does this application interact with?

● Find every aspect of this application that communicates with

other software (including device drivers, competing

applications, and external clients or servers).

● ”Communication” includes any aspect of the application that

creates data that other software will use or reads data saved

by other software.

Interoperability Tour

40Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● What devices should your program work with?

● What platforms (operating system and other system software)

should your program run on?

Compatibility Tour

41Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What support for testing is built into this application?

● Find all the features you can use as testability features.

● Identify available tools that can help in your testing.

The common result of a testability tour is a request for more testability features.

Example: the software under test trades messages with another program to get its

data. In the testability tour, you might realize it would be useful to see those messages.

So you ask for a new feature, a log file that saves the contents of every message

between these programs.

Testability Tour

42Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Build a catalog of risks.

● Imagine a way that the program could fail and

then search for all parts of the program that

might fail this way.

○ The extreme-value tour is an example

of this type of tour.

● Or walk through the program asking, at each

point, ”what could go wrong here?”

○ Then sort the failure ideas into

categories and for each category, try to

imagine other parts of the program

that could fail in the same way.

Specified-Risk Tour

In my experience, creating risk catalogs involves many

iterations of touring, categorizing, and brainstorming. See

● Kaner, C., Falk, J., & Nguyen, H.Q. (2nd Edition, 2000b).

Bug Taxonomy (Appendix) in Testing Computer Software.

● Vijayaraghavan, G., & Kaner, C. (2002). “Bugs in your

shopping cart: A taxonomy”.

www.testingeducation.org/a/bsct.pdf and (2003). “Bug

taxonomies: Use them to generate better tests”.

www.testingeducation.org/a/bugtax.pdf

● Jha, A. (2007). “A Risk Catalog for Mobile Applications”.

www.testingeducation.org/articles/AjayJha_Thesis.pdf

http://www.testingeducation.org/a/bsct.pdf
http://www.testingeducation.org/a/bugtax.pdf
http://www.testingeducation.org/articles/AjayJha_Thesis.pdf

43Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What might cause problems for your variables? What are the

programmers' assumptions about incoming data?

● Zero is usually interesting.

● Try small numbers where large ones are expected; negatives

where positive ones are expected; huge ones where

modestly-sized ones are expected; non-numbers where numbers

are expected; and empty values where data is expected.

● Try potentially unexpected units, formats, or data types.

Some tours seem more like taking a

simple inventory; others use more

aggressive testing. What's common

to the tours is that you do what's

necessary to identify a set of

information of a desired type. Test to

the level of creativity and depth

needed to uncover that information.

You can structure deeper testing,

guided by the tour's results, later.

Extreme Value Tour

44Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

What are the most complex aspects of the application?

● Along with features, consider challenging data sets.

● Find the five (N) most complex tasks or aspects of the

application.

Complexity Tour

45Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Consider the complexity tour

● The underlying hypothesis is that complex aspects

of the program are more vulnerable to failure,

malware attack, or user dissatisfaction.

● The touring tester looks for cases in which the

program requires a long sequence of user actions

or combines many functions to achieve one result,

or uses many variables at once.

This tour might be rare in practice

and the follow-up (risk-based testing)

will be hard work.

But someone who has the knowledge

and skill to do this will learn things

about the software's potential

weaknesses (and ways to navigate

the program) that less challenging

tours will miss.

Individual Differences Are to Be Expected

46Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Exploratory Testing is about using empirical methods

(tests) to learn new things about the software.

Testers run new tests all the time – testers run new

types of tests all the time – to gain new knowledge.

Each type of tour has testers explore the program from

a different perspective, looking for different types of

information.

No one will use every type of tour.

But people have different interests,

backgrounds and skills. A greater

diversity of available tours enables

greater diversity in testing. Some

testers will explore a program in

very different ways from other

testers.

Diversity and Exploration

47Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

In function testing, testers

● Focus on individual functions, testing them one by one.

Goal (not necessarily achieved):

● Test each function of the product.

Function Testing: Key Objective

48Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

To do function testing well, testers often create a function list.

● A function list is an outline of the program's capabilities.

● You can create the function list while doing the feature tour.

Creating a Function List

49Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The best tools for function lists are concept-mapping programs:

● http://www.mindtools.com/mindmaps.html

● https://www.educatorstechnology.com/2018/01/9-great-concept-mapping-tools-for.html

Tool list:

● http://en.wikipedia.org/wiki/List_of_concept_mapping_and_mind_mapping_software

We prefer:

● FreeMind: http://freemind.sourceforge.net/wiki/index.php/Main_Page

● MindMup: https://www.mindmup.com/

● XMind: http://www.xmind.net

● NovaMind: http://www.novamind.com

● MindManager: http://www.mindjet.com

Creating a Function List

We'll create a

function list with

the XMind

concept-mapping

tool in our

specification-based

testing assignment.

http://www.mindtools.com/mindmaps.html
https://www.educatorstechnology.com/2018/01/9-great-concept-mapping-tools-for.html
http://en.wikipedia.org/wiki/List_of_concept_mapping_and_mind_mapping_software
http://freemind.sourceforge.net/wiki/index.php/Main_Page
https://www.mindmup.com/
http://www.xmind.net
http://www.novamind.com
http://www.mindjet.com

50Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Test sympathetically

● What are the developers trying to achieve with

this program?

● What would it do if it worked properly?

● Why would people want to use this?

● What are its strengths?

You can use the process of creating the function list

to gain a sympathetic overview of the program's

capabilities.

”This sympathetic approach is really important even

though some testers will find its opposite (charge in

and find bugs) hard to break.

”Jon Bach pointed out to me that in early exploration,

he tests to find benefits. I thought this was weird,

until he pointed out that finding and recording bugs

caused him to lose focus on touring the product and

building his model of it. I've found that getting over

the habit of driving straight to the bugs is tough. It's

a dramatically different rhythm that for me required

practice.”

-- Michael Bolton

Using Function Testing in Early Testing
of the Product

51Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

If you run complex tests early, one broken function can block you from running an

entire test.

● Blocking bugs might prevent you from discovering a broken feature until late in

the project.

Fast scan for serious problems

● Some aspects of the product are so poorly designed or so poorly implemented

that they must be redone.

○ Better to realize this early.

○ Pointless to test an area in detail if it will be replaced.

Using Function Testing in Early Testing
of the Product

52Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Smoke testing (aka build-verification testing):

● Most tests in a smoke-test suite are function tests.

● Relatively small set of tests run whenever there is a

new build.

● Question is whether the build is worth more

thorough testing.

In some companies, testers design the smoke tests and

give them to the programmers, who run the smoke tests

as part of their build process.

Using Function Tests for Smoke Testing

History of ”smoke test”:

● New circuit board (or other

electronic equipment)

● Apply power

● If you get smoke:

 stop testing

53Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● You probably run more complex tests that involve several

features.

● The function list can serve as a coverage guide for this testing.

Are you reaching:

○ every feature?

○ every subfunction of every feature?

○ every option of every feature?

Using Function Testing Beyond Early Testing

54Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

If you use function testing as your main test technique:

● You will test the functions one by one (tests are focused on one

function at a time), but you test each one as thoroughly as you

can.

● Extend your function list to include more detail

 (see ”The fully-detailed function list”, next slide).

● Focus your testing on the detailed list:

○ Run the specific tests suggested by the list.

○ Explore freely, using the list as a foundation, not as a

limit on scope.

Using Function Testing as Your Main Technique

We do not recommend

using function testing

as your main technique.

However, some

companies do this. This

slide is about what they

do.

55Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Category of functions (e.g. Editing)

● Individual functions (e.g. Cut, Paste, Delete)

○ Inputs to the function

■ Variable

■ Maximum value

■ Minimum value

■ Other special cases

○ Outputs of the function

○ Possible scope of the function (e.g. Delete word, Delete paragraph)

○ Options of the function (e.g. configure the program to Delete the contents of a row of a table, leaving a blank row

versus Delete the row along with its contents)

○ Error cases that might be reached while using this function

○ Circumstances under which the function behaves differently (e.g. deleting from a word processor configured to

track and display changes or not to track changes)

The Fully-Detailed Function List

56Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Add notes to describe

● how you would know

○ if the function works

○ if the function does not work

● how the function is used

○ What is the result (the consequence) of running this

function?

● environmental variables that may constrain the function under

test

The Fully-Detailed Function List

No one (that we know

of) creates function

lists with all this detail

for every function.

But many people find

it useful to add notes

like these for a few

functions.

57Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Function testing is primarily a test of capability of individual units of the software.

It de-emphasizes:

● Interactions of features

● Special values of data, and interactions of values of several variables

● Missing features

● User tasks—whether the customer can actually achieve benefits promised by

the program

● Interaction with background tasks, effects of interrupts

● Responsiveness and how well the program functions under load

● Usability, scalability, interoperability, testability, etc.

Risks of Using Function Testing as
Your Main Technique

You can try to stretch

function testing's scope

- for example with the

much more heavily

detailed function lists -

but other techniques

are naturally focused on

concerns that you must

stretch function

testing to (try to) reach.

58Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A technique is:

● ”A body of technical methods (as in a craft, or in scientific

research).”

● ”A method of accomplishing a desired aim.”

(Merriam-Webster dictionary)

● ”the body of specialized procedures and methods used in any

specific field, esp. in an area of applied science.”

● ”method of performance; way of accomplishing.”

(https://www.dictionary.com/browse/technique)

Test Techniques: Defined

https://www.dictionary.com/browse/technique

59Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Techniques involve skill: You get better at applying a technique as you gain

experience with it.

● Techniques are more action than theory: You might need some theoretical

background to understand a technique, and a technique might apply theoretical

knowledge, but the technique itself is about how to do a type of testing.

● Techniques are different from each other: Any one technique will be more

effective obtaining some types of knowledge (e.g. some types of bugs) but less

effective for others.

Test Techniques: Defined

A test technique is a method of designing, running and interpreting

the results of tests.

60Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Some testers call exploratory testing and scripted testing test

techniques. You can use any technique in

● an exploratory way or

● a scripted way or

● a way that includes both exploratory and scripted elements

Exploration and script-following reflect broad visions about the best

way to organize and do testing, not specific tactics for designing

individual tests.

Therefore we call them approaches rather than techniques. (Some

people would call them competing paradigms).

Approaches vs. Techniques

61Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The ”pure” vision of a technique is a way of doing something. In practice, most test

techniques specify only some of the how-to-do-it details, leaving the others open.

The guidance given by a testing technique might focus on any of the following:

● Scope

● Coverage

● Testers

● Risks (potential problems)

● Activities

● Evaluation/oracles

● Desired result

Driving Ideas Behind Many Techniques

Every test addresses all

of these. A specific

technique typically

addresses 1 to 3 of

them, leaving the rest

to be designed into the

individual test.

62Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Driving Ideas Behind Many Techniques

Scope: what gets tested. Example: in function testing, test individual functions.

Coverage: intended extent of testing. Example: in function testing, you test every function. We'll typically analyze scope

(what to test) and coverage (how much of it) together.

Testers: who does the testing. Example: user testing is focused on testing by people who would normally use the

product.

Risks: potential problem you're testing for. Example: boundary errors.

Activities: how you actually do the tests. Example: all-pairs testing specifies how you combine conditions to obtain test cases.

Evaluation/Oracle: how to tell whether the

test passed or failed.

Example: function equivalence testing relies on comparison to a reference function.

Desired result: testing with a tightly-defined

objective.

Example: build verification testing checks whether the build is stable enough for

more thorough testing.

63Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Guidance from function testing:

● Scope: Focus on individual functions, testing them one by one.

● Coverage: Test every function (or a subset that is a knowable

proportion).

What function testing doesn't specify:

● Testers: Who does the testing

● Risks: What bugs we're looking for

● Activities: How to run the tests

● Evaluation/oracles: How to evaluate the test results

Function Testing as a Technique

This discussion of our

approach to

techniques is based on

Kaner, Bach &

Pettichord (2001)

Lessons Learned in

Software Testing.

64Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Many techniques implement more than one underlying idea.

Because of this, how you classify a technique depends on what you

have in mind when you use it.

For example, feature integration testing:

● is coverage-oriented if you are checking whether every

function behaves well when used with other functions.

● is risk-oriented if you have a theory of error for interactions

between functions.

Classifying the Techniques

65Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Here's a loosely organized collection of some (far from all) test techniques.

You cannot possibly absorb all this information in this course.

● While you take the course, this set will give you a sense of the variety of

techniques;

● Later, when you are testing programs, we hope you try techniques from the list.

We've provided references for the techniques to facilitate this.

Remember: exam questions will be drawn from the study guide. Before you panic at

all the detail in these slides, look over the questions. We don't expect you to memorize

a lot of detail.

Examples

66Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Coverage-Based Techniques Focus
on What Gets Tested

In principle, a

coverage-based

technique sets you up

to run every test of a

given type. In practice,

you probably won't run

every test of any type,

but you might measure

your coverage of that

type of testing.

● Function testing

● Feature or function integration

testing

● Tours

● Equivalence class analysis

● Boundary testing

● Best representative testing

● Domain testing

● Test idea catalogs

● Logical expressions

● Multivariable testing

● State transitions

● User interface testing

● Specification-based testing

● Requirements-based testing

● Compliance-driven testing

● Configuration testing

● Localization testing

67Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Tester-Based Techniques Focus
on Who Does the Testing

There's a mystique in

designing a technique

around the type of

person who tests.

However, what they

will actually do may

have little to do with

what you imagine will

happen.

● User testing

● Alpha testing

● Beta testing

● Bug bashes

● Subject-matter expert testing

● Paired testing

● Eat your own dogfood

● Localization testing

68Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Risk-Based Techniques Focus on
Potential Problems

Risk-based testing

starts from an

idea of how the

program could

fail. Then design

tests that try to

expose problems

of that type.

● Boundary testing

● Quicktests

● Constraints

● Logical expressions

● Stress testing

● Load testing

● Performance testing

● History-based testing

● Risk-based multivariable

testing

● Usability testing

● Configuration/compatibility

testing

● Interoperability testing

● Long sequence regression

69Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Activity-Based Techniques Focus
on How You Do the Testing

Because these

focus on ”how-to”,

these might be

the techniques

that most closely

match the

classical notion of

a ”technique.”

● Guerilla testing

● All-pairs testing

● Random testing

● Use cases

● Scenario testing

● Installation testing

● Regression testing

● Long sequence testing

● Dumb monkey testing

● Load testing

● Performance testing

70Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Evaluation-Based Techniques
Focus on Your Oracle

Any time you have a

well-specified oracle,

you can build a set of

tests around that

oracle. See our

presentation of

Hoffman's collection

of oracles in

BBST-Foundations.

● Function equivalence testing

● Mathematical oracle

● Constraint checks

● Self-verifying data

● Comparison with saved results

● Comparison with specifications or other authoritative documents

● Diagnostics-based testing

● Verifiable state models

71Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Desired-Result Techniques Focus
on a Specific Decision or Document

You are doing

document-focused

testing if you run a set

of tests primarily to

collect data needed to

fill out a form or create

a clearly-structured

report.

● Build verification

● Confirmation testing

● User acceptance testing

● Certification testing

72Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

There Are Also Glass Box Techniques,
Such As...

Most techniques

that can be done

black-box can also

be used in

glass-box testing.

● Unit tests

● Functional tests below the UI

● Boundary testing

● State transitions

● Risk-based

● Dataflows

● Program slicing

● Protocol testing

● Diagnostics-driven testing

● Performance testing

● Compliance-focused testing

● Glass-box regression testing

● Glass-box decision coverage

● Glass-box path coverage

73Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Programmers can see the implementation tradeoffs, risks, and special cases in

their code and write tests to focus on them.

● Programmers can capture state information that is invisible to black box testers.

● Programmers who create their own test libraries often write more testable

code.

● Test execution is typically automated.

● Programmers typically run them many times—many tests are run every time

the programmer compiles the software.

● The programmer sees failures immediately. There is no bug-report-writing delay

or cost.

● Maintenance of these tests is probably cheaper and easier.

What's Different About Glass Box Tests?

We won't further

study these techniques

in this course. We're

simply reminding you

that the black box

techniques are just a

subset.

74Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Coverage-Based Techniques Focus
on What Gets Tested

In principle, a

coverage-based

technique sets you up

to run every test of a

given type. In practice,

you probably won't run

every test of any type,

but you might measure

your coverage of that

type of testing.

● Function testing

● Feature or function integration

testing

● Tours

● Equivalence class analysis

● Boundary testing

● Best representative testing

● Domain testing

● Test idea catalogs

● Logical expressions

● Multivariable testing

● State transitions

● User interface testing

● Specification-based testing

● Requirements-based testing

● Compliance-driven testing

● Configuration testing

● Localization testing

75Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Test each feature or function on its own.

● Scan through the product:

○ cover every feature or function

○ with at least enough testing to determine

■ what it does and

■ whether it is (basically) working

Function Testing

Function testing

gives you

coverage of the

features of the

product.

76Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Test several features or functions together.

● Typically, do this testing with functions that:

○ will often be used together

■ Example: in a spreadsheet, sum part of a column,

then sort data in the column. Sorting should change

the sum if and only if you sort different values into

the part being summed.

○ work together to create a result

■ Example: select a book, add it to a shopping cart,

pay for the book.

Feature Integration Testing

Feature

integration

testing gives you

coverage of the

interactions of

the product's

features.

77Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A tour is a search through the product to create a collection of

related information about the program.

For example, you can do:

● A feature tour, to find every feature.

● A variable tour, to find every user-changeable variable.

● An output tour, to find every variable, every report, and every

user-visible message the program can create.

Tours

Tours provide a basis

for coverage-based

testing. Create a list of

things to test with a

tour (e.g. a list of error

messages), then test

each member of the

list.

78Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

An equivalence class is a set of values for a variable that you consider equivalent.

Test cases are equivalent if

(a) they test the same thing,

(b) if one of them catches a bug, the others probably will too, and

(c) if one of them doesn't catch a bug, the others probably won't either.

The set of values you could enter into a variable is the variable's domain. Equivalence

class analysis divides a variable's domain into non-overlapping subsets (partitions)

that contain equivalent values.

In equivalence-class testing, you test one or two values from each partition.

Equivalence Class Analysis

Equivalence-class based

testing makes testing

more efficient by

reducing redundancy of

the tests. As a

coverage-oriented

technique: test all the

equivalence classes of

every variable.

79Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

In boundary-value testing, you partition the values of a variable into its equivalence

classes and then test the upper and lower bounds of each equivalence class.

A boundary value is a particularly good member of an equivalence class to test

because:

● It carries the same risks as all the other members of the class.

● Boundary values carry an additional risk because off-by-one errors are

common.

Boundary Testing

Boundary-value testing

adds a risk model

to equivalence-class

based testing.

Coverage:

Test every boundary of

every variable.

80Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The best representative of a partition (of the domain of a variable) is the one most

likely to cause the program to fail a test.

● If you can order values in the domain from small to large, best representatives

are typically boundary values.

● If you cannot order values, you can often find a best representative by

considering more than one risk. Two values of a variable might be equivalent

with respect to one risk, but not with respect to the other.

● If all values in a partition are truly equivalent, you can use any of them as a best

representative.

Best Representative Testing

The concept of ”best

representatives”

generalizes domain

testing to non-ordered

sets and to secondary

dimensions.

Coverage:

test every best

representative of every

variable, relative to

every risk.

81Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Domain testing formalizes and generalizes equivalence class and

boundary analysis:

● Partition the variable's domain into equivalence classes and

test best representatives

● Test output domains as well as input domains

● Test secondary as well as primary dimensions

● Test consequences as well as input filters

● Test multidimensional variables and multiple variables

together

Domain Testing

After today, we'll

stop talking about

equivalence class

and boundary

analysis as

techniques. They

are all part of

domain testing.

82Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

You can develop a standard set of tests for a specific type of object (or risk) and reuse

the set for similar things in this product and later products. Marick suggested that

testers develop these types of lists and called them test idea catalogs.

● Marick, B.M. (1994). The Craft of Software Testing: Subsystems Testing Including

Object-Based and Object-Oriented Testing.

○ Updated catalog: http://www.exampler.com/testing-com/writings/catalog.pdf

○ Short catalog: http://www.exampler.com/testing-com/writings/short-catalog.pdf

Test Idea Catalogs

Coverage:

The catalog lists

the test ideas to

cover.

http://www.exampler.com/testing-com/writings/catalog.pdf
http://www.exampler.com/testing-com/writings/short-catalog.pdf

83Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Kaner, Bach & Pettichord provide examples of test idea catalogs for numeric input

variables in Lessons Learned of Software testing (2001, pp. 45-50) , with more of the same

type of catalogs and additional examples in:

● Kaner, C., Padmanabhan, S., & Hoffman, D. (2013) Domain Testing: A Workbook

● Hendrickson, E. (2006). “Test Heuristics Cheat Sheet.”

http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf

● Hunter, M. J. (2010). “You are not done yet.”

http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

● Nguyen, H.Q., Johnson, B., & Hackett, M. (2003, 2nd ed), Testing Applications on

the Web (Appendices D through H).

Test Idea Catalogs

Coverage:

The catalog lists

the test ideas to

cover.

http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

84Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

All-pairs testing is the best-known multivariable technique. It is effective for testing

many independent variables.

Several classes of multivariable techniques:

● Mechanical. The tester uses a routine procedure to determine a good set of

tests. Examples: random combinations and all-pairs.

● Risk-based. The tester combines test values (values of each variable) based on

perceived risks associated with noteworthy combinations.

● Scenario-based. The tester combines test values on the basis of interesting

stories created for the combinations.

Multivariable Testing

All-pairs is defined by

its coverage (all pairs

of values of interest of

all variables). The

other approaches are

coverage-focused to the

extent that you design

a pool of tests and

attempt to cover it.

85Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Consider a health-insurance program with a decision rule that says:

● if PERSON-AGE > 50 and

● if PERSON-SMOKES is TRUE

● then set OFFER-INSURANCE to FALSE

The decision rule expresses a logical relationship. If you make a

series of separate decisions, the result is the same as if you had

made all those decisions at the same time. Thus, you can test the set

together as one complex logical expression.

Testers often represent decision rules (and combinations of rules) in

decision tables. You can turn each row in the table into a test.

Logical Expressions

As a

coverage-oriented

technique,

logical-expression

testing attempts to

check every decision

in the program or a

theoretically

interesting subset.

86Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Amman, P., & Offutt, J. describe several coverage rules for

logical-expression testing (Introduction to Software Testing, 2008.)

● Brian Marick presents a simpler approach to coverage, which

you can apply using MULTI (“Testing for Programmers”, 2000

http://exampler.com/testing-com/writings/half-day-programmer.pdf)

Logical Expressions

Marick implemented his

approach to testing

logical expressions in a

program, MULTI. Tim

Coulter and his

colleagues extended

MULTI and published it

(with Marick's

permission) at

http://sourceforge.net/proj

ects/multi/

http://exampler.com/testing-com/writings/half-day-programmer.pdf
http://sourceforge.net/projects/multi/
http://sourceforge.net/projects/multi/

87Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● A program moves from state to state. In a given state, some

inputs are valid and others are ignored or rejected.

● In response to a valid input, the program under test does

something that it can do, which takes it to a new state.

● Think of a sequence of length 2 (from a state to a transition to

the next state), length 3 (state → transition → state →

transition → state), etc. (Cross-reference: see the Operational

Modes tour.)

State-Model-Based Testing

Coverage:

State-model testers

often use specialized

algorithms to walk the

program through long

paths that cover all

sequences of length 2.

88Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● User interface testing is about checking that the elements of

the UI have been implemented correctly.

● User interface testing is NOT about whether the UI is well

designed or easy to understand or work with - that's usability

testing.

User Interface Testing

Coverage:

Focus on covering all

the elements of the

user interface

(the dialogs, menus,

pull-down lists, and all

the other UI controls).

89Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Spec-based testing is focused on verifying factual claims made

about the product in the specification. (A factual claim is any

statement that can be shown to be true or false.)

● This often includes claim made in the manual, in marketing

documents or advertisements, and in technical support

literature sent to customers.

● We'll see in a few days that many specifications are implicit.

For example, many programs do arithmetic but few include

explicit specifications of the rules of arithmetic.

Specification-Based Testing

Coverage:

Test every claim

in the documents

that guide testing.

90Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Requirements-based testing is focused on proving, requirement by

requirement, that:

● the program satisfies every requirement in a requirements

document, or that

● some of the requirements have not been met.

It might not be possible to answer: ”Does this program actually

meet this requirement” with simple tests.

Requirements that are easily testable are often trivial compared to

the ”real” requirements.

Requirements-Based Testing

What is called

requirements-based

testing is typically

focused on written

requirements. These

are, of course,

incomplete, subject to

frequent change, and

often incorrect.

91Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Some products must meet externally-imposed requirements

(such as regulatory requirements).

● Compliance-driven testing is focused on doing the set of tasks

(usually the minimum set) needed to demonstrate compliance

with these requirements.

Compliance-Driven Testing

Coverage:

Do every task

needed to

demonstrate

compliance.

92Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● If you have to test compatibility with 100 printers, and you

have tested with 10, you have achieved 10% printer coverage.

More generally, configuration coverage is the percentage of

configuration tests the program has passed compared to the

number you plan to run.

● Why call this a test technique? Testers focused on this coverage

objective are likely to craft methods to make high volume

configuration testing faster and easier. This optimization of the

effort to achieve high coverage is the underlying technique.

Configuration Coverage

Configuration

coverage is the

percentage of

configuration tests

the program has

passed compared

to the number you

plan to run.

93Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● When you adapt a program to run in a different language, a

different country, or a different culture, you make a specific set

of changes.

● Software publishers who will localize their software typically

design the software to make localization easy. In such a case,

you can

○ Create a list of the things that can be changed for

localization.

○ Test the list to see what was actually changed, whether

the changes worked, and whether anything that should

have been changed was not changed.

Localization Testing

Coverage:

Test against

a list of

localization-related

changes and risks.

94Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● User testing

● Alpha testing

● Beta testing

● Bug bashes

● Subject-matter expert testing

● Paired testing

● Eat your own dogfood

● Localization testing

Tester-Based Techniques Focus
on Who Does the Testing

There's a mystique in

designing a technique

around the type of

person who tests.

However, what they

will actually do may

have little to do with

what you imagine will

happen.

95Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● This testing is done by the types of people who would typically

use your product.

● User testing might be done:

○ at any time during development,

○ at your site or at theirs,

○ in carefully directed exercises or at the user’s discretion.

● Some types of user testing, such as task analyses, are more

like joint exploration (involving at least one user and at least

one member of your company's testing team) than like testing

by one person.

User Testing

Testers:

Users (ideally,

representative of

your market) or

people who the

company treats as

surrogates for

users.

96Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● This testing is done early in development, usually by the software development

group (programmers and/or testers).

● ”Alpha” is a milestone with different meanings at different companies. In the

typical alpha period:

○ the program is stable and complete enough for some level of functional

testing,

○ but not yet stable enough for the beta milestone.

● Alpha might start immediately after the first feature is finished (for example in

Extreme Programming) or not until all features are ”complete” (coded but

probably not yet working).

Alpha Testing

Testers:

Typically

programmers

and in-house

testers who work

closely with

the programmers.

97Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Typical case: External users run almost-finished software on their own computers.

This testing starts at the ”beta” milestone.

Design beta: User representatives or subject matter experts assess the software's

design.

Marketing beta: Pre-release to potential large customers, typically later and more

stable than at ”beta” milestone.

Compatibility beta: External users test the product's compatibility with their software

or hardware, typically because they have software or hardware that the development

group doesn't have. Ideally, this starts as soon as the software can be tested for

compatibility because adapting the software can be difficult under these

circumstances.

Beta Testing

Testers:

Typically people

external to the

company (or at least

external to the

development group).

Typically representative

of the market or owners

of market-relevant

equipment.

98Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● In-house testing using anyone who is available (e.g. secretaries, programmers,

tech support, maybe even some managers).

● A typical bug-bash lasts a half-day and is done when the software is close to

being ready to release.

● Note: we're listing this technique as an example, not endorsing it. Some

companies have found it useful for various reasons; others have not.

○ Often an ineffective replacement for exploratory testing.

○ Often seen as more effective by non-testing managers than by the

testers.

Bug Bashes

Testers:

Typically employee

nontesters or

testers who aren't

assigned to test

this product.

99Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Give the product to an expert on some issues addressed by

the software, and request feedback (bugs, criticisms, and

compliments).

● The expert may or may not be someone you would expect to

use the product - her value is her knowledge, not her

representativeness of your market or her skill as a tester.

● When the expert pairs with a tester or programmer (serves as

a live oracle), the staff gain a new level of training as a side

effect of the testing process.

Subject-Matter Expert Testing

Tester:

Someone who is

seen as highly

knowledgeable

about the product

category or its

risks.

100Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Two testers (or a tester and a programmer) testing together:

● May share one computer and trade control of it while they test.

● Or test on their own machines, with dual-monitor systems (one placed for easy

reading by the other tester) so that each tester can easily see what's on the

 other's screen.

● Collaboration might involve on tester reading (specs, bug reports, etc.) or writing

up a bug while the other executes tests.

● One tester might protect the other's time by dealing with all the visitors (e.g.

manager nagging for status report).

Testers:

Two people

(testers and/or

programmers)

on the project

team, testing

together.

See Pyhäjärvi, M. (2020), “Social Software Testing Approaches” https://bbst.courses/blog/social-software-testing-approaches

Paired Testing

https://bbst.courses/blog/social-software-testing-approaches

101Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Your company uses and relies on pre-release

versions of its own software.

● This often yields more critical design feedback than

beta testing.

● This often provides a harsher and more credible

real-world readiness assessment of the software

than beta or formal in-house testing.

Eating Your Own Dogfood

Testers:

In-house users who do real work with

the software.

Caution:

This can miss ways that other

organizations will use the software.

It might provide false reassurance

about the quality of the software.

102Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● The software is adapted to another culture or language.

● The localization testing is done by people from that culture or

who are fluent in that language (probably a native speakers).

● These people are regarded as subject matter experts who can

speak authoritatively about the appropriateness of the

localization.

Localization Testing

Testers:

People from

(or deeply

familiar with)

the target culture.

103Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Risk-Based Techniques Focus on
Potential Problems

Risk-based testing

starts from an

idea of how the

program could

fail. Then design

tests that try to

expose problems

of that type.

● Boundary testing

● Quicktests

● Constraints

● Logical expressions

● Stress testing

● Load testing

● Performance testing

● History-based testing

● Risk-based multivariable

testing

● Usability testing

● Configuration/compatibility

testing

● Interoperability testing

● Long sequence regression

104Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Boundary testing arises out of a specific risk:

● Even if every other value in an equivalence class is treated correctly, the

boundary value might be treated incorrectly (grouped with the wrong class).

○ The programmer might code the classification rule incorrectly.

○ The specification might state the classification rule incorrectly.

○ The specifier might misunderstand the natural boundary in the real

world.

○ The exact boundary might be arbitrary, but coded inconsistently in

different parts of the program.

● Example: Class should contain all values < 25 but 25 is treated as a member of

the class as well.

Boundary Testing

Risk(s):

Misclassification

of a boundary case

or mishandling

of an

equivalence class.

105Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A quicktest is an inexpensive test, optimized for a common type of

software error, that requires little time or product-specific

preparation or knowledge to perform. For example:

● Boundary-value tests check whether a variables boundaries

were misspecified. You don't have to know much about the

program to do this type of test.

● Interference tests interrupt the program while it's busy. For

example, you might try cancelling a print job or forcing an

out-of-paper condition while printing a long document.

Quicktests (Risk-Based Testing)

We cataloged a lot of

quicktests at the 7th

Los Altos Workshop in

Software Testing (1999)

and will look at some

of these in Lecture 2.

106Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A constraint is a limit on what the program can handle. For example, if a program can

only handle 32 (or fewer) digits in a variable, the programmer should provide

protective routines to detect and reject any input outside of the 32-digit constraint.

Jorgensen and Whittaker provides detailed suggestions for identifying and testing:

● Input constraints

● Output constraints

● Computation constraints

● Stored-data constraints

See Jorgensen, A.A. (1999). Software Design Based on Operational Modes.
https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf and Whittaker, J.A. (2002). How to Break Software.

Jorgensen &

Whittaker's approach

to constraints

generalizes the idea of

input boundaries to all

program data and

activities.

Constraints

https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf

107Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Consider an insurance program's decision rule:

● if PERSON-AGE > 50 and

● if PERSON-SMOKES is TRUE

● then set OFFER-INSURANCE to FALSE

You can write this decision as a logical express (a formula that evaluates

to TRUE or FALSE).

If you make a series of separate decisions, the result is the same as if

you had made all those decisions at the same time. Thus, you can test

the set together as one complex logical expression.

Logical Expressions

Marick (2000)

“Testing for Programmers”

http://exampler.com/testing-com/writings/

half-day-programmer.pdf

took a risk-oriented approach to

logical-expression testing by

considering common mistakes in

designing/coding a series of decisions.

His approach is implemented in MULTI.

http://exampler.com/testing-com/writings/half-day-programmer.pdf
http://exampler.com/testing-com/writings/half-day-programmer.pdf
http://sourceforge.net/projects/multi/

108Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Testing designed and intended to overwhelm the product, forcing it to fail.

○ Intentionally subject the program to too much input, too many

messages, too many tasks, excessively complex calculations, too little

memory, toxic data combinations, or even forced hardware failures.

○ Explore the behavior of the program as it fails and just after it failed.

● What aspects of this program need hardening to make consequences of

failure less severe?

See for example, Beizer at http://www.faqs.org/faqs/software-eng/testing-faq/section-15.html

Stress Testing

There are many other

definitions of

”stress testing,”

including what we are

calling

”performance testing”

and ”load testing.”

http://www.faqs.org/faqs/software-eng/testing-faq/section-15.html

109Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Load testing addresses the risk that a user (or group of users) can

unexpectedly run the software or system under test out of resources.

● A weak load test simply checks the number of users who can connect to a site or

some equivalent count of obvious, simple task.

● A better load testing strategy takes into account that different users do different

tasks that require different resources. On a system that can handle thousands

of connections, a few users doing disk-intensive tasks might have a huge impact.

● Additionally, Savoia found that for many programs, as load increased, there was

an exponential increase in the probability that the program would fail basic

functional tasks.

Load Testing

See Savoia, A. (2000). “The science and art of web site load testing”. International Conference on Software Testing Analysis
& Review (STAR East), Orlando. https://www.stickyminds.com/presentation/science-and-art-web-site-load-testing

Risks:

Inappropriate responses

to high demands or low

resources. Does the

program handle its

limitations gracefully or

is it surprised by them?

Does it fail only under

extreme cases?

https://www.stickyminds.com/presentation/science-and-art-web-site-load-testing

110Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Testers usually run performance tests to determine how quickly the program runs

(does tasks, processes data, etc.) under varying circumstances.

In addition, performance tests can expose errors in the software under test or the

environment it is running on.

Run a performance test today; run the same test tomorrow:

● If the execution times differ significantly and

● the software was not intentionally optimized, then

● something fundamental has changed for (apparently) no good reason.

Performance Testing

Risks:

Program runs too

slowly, handles some

specific tasks too

slowly, or changes time

characteristics because

of a maintenance error.

111Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

These tests check for errors that have happened before.

● This includes studying the types of bugs that have occurred in

past versions of this product or in other similar products.

What’s difficult for one product in a class is often difficult for

other products in the same class. This isn’t regression testing,

it’s history-informed exploration.

● In a company that has a regression problem (bugs come back

after being fixed), regression tests for old bugs is a risk-based

test technique.

History-Based Testing

Risks:

Old bugs

reappear.

112Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The most widely discussed multivariable techniques are mechanical

(e.g. all-pairs testing). An algorithm determines what values of which

variables to test together.

A risk-based technique selects values based on a theory of error.

● Example: you might test configurations (select video, printer,

language, memory, etc.) based on troublesome past

configurations (technical support complaints).

● Example: you might pick values of variables to use together in

a calculation to maximize the opportunity for an overflow or a

significant rounding error.

Risk-Based Multivariable Testing

Risks:

Inappropriate

interactions

between variables

(including

configuration or

system variables).

113Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Software runs in an environment (the computer or network that it

runs on). Its environmental requirements might be:

● narrow (only this operating system, that printer, at least this

much memory, works only with this version of that program), or

● very flexible.

Configuration tests help you determine what environments the

software will correctly work with.

Configuration testers often pick specific devices, or specific test

parameters, that have a history of causing trouble.

Configuration/Compatibility Testing

Risk:

Incompatibility

with hardware,

software, or the

system

environment.

114Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Test whether the software under test interacts correctly with

another program, device, or external system.

● Simple interoperability testing is like function testing: Try the two

together. Do they behave well together?

● To add depth to this testing, you can design tests that focus

specifically on ways in which you suspect the software might not

work correctly with the other program, device or system.

● A tester focused on interoperability will probably test from a list

of common problems.

Interoperability Testing

Difference between compatibility

testing and interoperability testing:

● Compatibility—with software or

hardware that are part of the

system under test

● Interoperability—with software or

hardware external to the system

under test

115Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Usability tests try to demonstrate that some aspect of the software is unusable for

some members of the intended user community. For example:

● Too hard to learn

● Too hard to use

● Makes user errors too likely

● Wastes your time

Usability testing: done by usability testers who might or might not be end users.

User testing: done by users, who may or may not focus on the usability of the

software.

Risks:

Software is unusable

for some members

of the intended user

community. (e.g. too

hard to learn or use,

too slow, annoying,

triggers user errors,

etc..)

See Nielsen, J. (1994), “10 Usability Heuristics for User Interface Design” www.nngroup.com/articles/ten-usability-heuristics/

Usability Testing

https://www.nngroup.com/articles/ten-usability-heuristics/

116Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A program passes a set of tests. Then test the same build of the same software with

the same tests, run many times in a random order. This is long-sequence regression

testing.

Long-sequence regression can expose bugs that are otherwise hard to find, such as

intermittent-seeming failures from:

● memory leaks,

● race conditions,

● wild pointers and

● other corruption of working memory or the stack.

Long-Sequence Regression

McGee, P. & Kaner, C. (2004). “Experiments with high volume test automation.” Workshop on Empirical Research in
Software Testing, International Symposium on Software Testing and Analysis www.kaner.com/pdfs/MentsvillePM-CK.pdf

The long-sequence

tests hunt bugs that

won’t show up in

traditional testing

(run tests one at a time

and clean up after each

test) and are hard to

detect with source

code analysis.

http://www.kaner.com/pdfs/MentsvillePM-CK.pdf

117Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Activity-Based Techniques Focus
on How You Do the Testing

Because these focus on

”how-to”, these might

be the techniques that

most closely match the

classical notion of a

”technique.”

● Guerilla testing

● All-pairs testing

● Random testing

● Use cases

● Scenario testing

● Installation testing

● Regression testing

● Long sequence testing

● Dumb monkey testing

● Load testing

● Performance testing

118Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Exploratory tests that are usually time-boxed and done by an

experienced explorer: The goal is a fast and vicious attack on

some part of the program.

● For example, a senior tester might spend a day testing an area

that is seen as low priority and would otherwise be ignored.

She tries out her most powerful tests.

○ If she finds significant problems, the area will be

rebudgeted and the overall test plan might be affected.

○ If she finds no significant problems, the area will

hereinafter be ignored or only lightly tested.

Guerilla Testing

Activity:

Time-boxed,

risk-based testing

focused on one

part of the

program.

119Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Suppose you test N variables together. Pick a few values to test

from each variable.

● Under the all-pairs coverage criterion, your tests must include one

value for each variable and, across the set of tests, every value of

each variable is paired with every value of every other variable.

(Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997).

“The AETG system: An approach to testing based on combinatorial

design”. https://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.260.264&rep=rep1&type=pdf)

● Testers typically rely on a tool for picking the combinations of

values for the variables. See https://jaccz.github.io/pairwise/tools.html

All-Pairs Testing

All-pairs specifies a

coverage criterion.

Activity:

Following the algorithms

(or using

tools) to generate tests

that meet this criterion.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.260.264&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.260.264&rep=rep1&type=pdf
https://jaccz.github.io/pairwise/tools.html

120Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

In random testing, the tester uses a random number generator to

determine:

● The values to be assigned to some variables, or

● The order in which tests will be run, or

● The selection of features to be included in a this test.

Random Testing

Activity:

Drive test

decisions with a

random number

generator.

121Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A use case describes a system's behavior in response to a request from an actor which

might be a human or another system.

The use case describes intended behavior (how the system should work) but not the

motivation of the actor or the consequences for the actor if the request fails. The use

case shows the actor's steps and system behavior on a sequence diagram. The

diagram's ”happy path” shows the simplest set of steps that lead to success. Other

paths show complications, some leading to failures.

In use-case based testing, you do the modeling and test down the sequence diagram's

paths.

See Utting, M., & Legeard, B. (2007). Practical Model-Based Testing: A Tools Approach

Use Cases

Activity:

The tester creates

sequence diagrams

(behavior models) and

runs tests that trace

down the paths of the

diagrams.

122Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

A scenario is a hypothetical story about the software. A scenario

test is a test based on a scenario. A good scenario test has five

characteristics:

1. The scenario is a coherent story.

2. The story is credible.

3. Failure of the test would motivate a stakeholder with influence

 to argue that it should be fixed.

4. The test is complex (involves several features or data).

5. The test result is easy to evaluate.

Scenario Testing

Activity:

Creating a story (or

a related-family of

stories) and a test

that expresses it.

123Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Check whether a new product, a new version

of the product, or a patch installs well, without

interfering with other software.

● Check whether a virgin installation or

re-installation works.

● Check whether uninstallation works and

reinstallation after uninstallation is possible

(or impossible if it the Digital Rights

Management (DRM) forbids it).

● Installation is often one of the least well-tested

parts of a program, and therefore a good

place to hunt bugs.

Installation Testing

Some discussions of installation testing are risk-focused

(such as Bach, J. (1999), “Heuristic risk-based testing”.

http://www.satisfice.com/articles/hrbt.pdf), but many are more

procedural, or more focused on how to automate much of

the installation-test process

(e.g. Agruss, C. (2000). “Software installation testing: How to

automate tests for smooth system installation”.

https://www.stickyminds.com/better-software-magazine/softwar

e-installation-testing-how-automate-tests-smooth-system-install

ation).

http://www.satisfice.com/articles/hrbt.pdf
https://www.stickyminds.com/better-software-magazine/software-installation-testing-how-automate-tests-smooth-system-installation
https://www.stickyminds.com/better-software-magazine/software-installation-testing-how-automate-tests-smooth-system-installation
https://www.stickyminds.com/better-software-magazine/software-installation-testing-how-automate-tests-smooth-system-installation

124Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Reuse of the same tests after change.

● The goal of bug fix regression is to prove a bug fix was ineffective.

● The goal of old bugs regression is to prove a software change caused a fixed bug

to become unfixed.

● The goal of side-effect regression is to prove a change has caused something that

used to work to now be broken.

Most discussions of regression testing as a technique consider:

● How to automate the tests, or

● How to use tools to select a subset of the tests that might be the most

interesting for the current build.

Regression Testing

Activity:

Do the same boring

tests over and over.

Or write and fix and fix

and fix and fix and fix

and fix ”automation”

code to do the same

test over and over.

125Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Long sequence testing (LST) is done overnight or for days. Long-sequence regression

is 1 example. You can also create long sequences of tests that have never been run

previously.

● The goal of LST is to discover errors that short sequence tests miss.

● These are often basic functional errors that are unnoticed when they occur but

show up as violations of a precondition for a later test.

● Other errors include, stack overflows, wild pointers, memory leaks, and bad

interactions among several features.

● LST is sometimes called duration testing, life testing, reliability testing, soak

testing or endurance testing.

Long Sequence Testing

Activity:

Creating software to

execute LSTs, with

diagnostics to help

troubleshoot the

failures they trigger.

126Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

When a program is in any given state, it will ignore some inputs (or other events) and

respond to others. The program's response takes it to its next state. This is a state

transition.

You can feed random inputs to the program to force state transitions. Noel Nyman

calls this ”monkey” testing. If you have:

● a state model that ties inputs to transitions, and

● an oracle (the ability to tell whether the program transitioned to the correct

state)

then you can do state-model-based testing (Nyman calls this a ”smart monkey”).

If you don't have the oracle, you can still run the monkey, waiting to see if the program

crashes or corrupts data in some obvious way. This is the dumb monkey.

Dumb Monkey Testing

Activity:

Random

state-transition

tests programmed

to run-until-crash.

127Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

”Performance testing is a type of testing intended to determine the

responsiveness, throughput, reliability, and/or scalability of a system under a

given workload…”

”Performance testing is typically done to help identify bottlenecks in a system, establish

a baseline for future testing, support a performance tuning effort, determine

compliance with performance goals and requirements, and/or collect

other performance-related data to help stakeholders make informed decisions related

to the overall quality of the application being tested.”

(Meier, J.D., Farre, C., Bansode, P., Barber, S., & Rea, D. (2007).

Performance Testing Guidance for Web Applications.

https://pdfs.semanticscholar.org/a2ff/c8cca5b3aa3302dcb3a05517e8c763314a1f.pdf&sa=D&ust

=1603354685461000&usg=AFQjCNFc1RQ1F6lsH6m0c7ZUB4QiQwVdNg)

Performance Testing

Activity:

Code and execute

input streams and

execution-timing

monitors.

https://pdfs.semanticscholar.org/a2ff/c8cca5b3aa3302dcb3a05517e8c763314a1f.pdf&sa=D&ust=1603354685461000&usg=AFQjCNFc1RQ1F6lsH6m0c7ZUB4QiQwVdNg
https://pdfs.semanticscholar.org/a2ff/c8cca5b3aa3302dcb3a05517e8c763314a1f.pdf&sa=D&ust=1603354685461000&usg=AFQjCNFc1RQ1F6lsH6m0c7ZUB4QiQwVdNg

128Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Evaluation-Based Techniques
Focus on Your Oracle

Any time you have a

well-specified oracle,

you can build a set of

tests around that

oracle. See our

presentation of

Hoffman's collection

of oracles in BBST®

Foundations.

● Function equivalence testing

● Mathematical oracle

● Constraint checks

● Self-verifying data

● Comparison with saved results

● Comparison with specifications or other authoritative

documents

● Diagnostics-based testing

● Verifiable state models

129Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

”Function equivalence tests compare two programs' evaluation of

the same … function.” (Kaner, C., Falk, J., & Nguyen, H.Q. (2nd

Edition, 2000). Testing Computer Software)

● The function in the software under test is the test function; the

other is the reference function or the oracle function.

● In this type of testing, you might compare the program's

evaluations of hundreds (or billions) of sets of data. At some

point, you either find a difference between the functions or

conclude you have tested so much that you won't find a

difference with further testing.

Function Equivalence Testing

Example:

Hoffman's on testing

MASPAR's square root

function. See Hoffman,

D. (2003). “Exhausting

your test options”.

https://www.stickyminds.

com/better-software-

magazine/exhausting-

your-test-options

https://www.stickyminds.com/better-software-magazine/exhausting-your-test-options
https://www.stickyminds.com/better-software-magazine/exhausting-your-test-options
https://www.stickyminds.com/better-software-magazine/exhausting-your-test-options
https://www.stickyminds.com/better-software-magazine/exhausting-your-test-options

130Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● You can often derive a predicted value from the mathematical

attributes of the software under test. For example:

○ invert calculations (square a square root, or invert a

matrix inversion)

○ a sine function's shape is predictable

● This is like function equivalence testing.

○ You might test with arbitrarily many values.

○ You make and check exact predictions.

○ But you might do everything within the software under

test, without an external reference function.

Mathematical Oracle

131Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Check whether some output of the program is impossible:

● An American postal code can't be 6 digits.

● A Canadian province's name can be checked against a short list

of provinces.

● In an order entry system, the order number of an order should

be smaller than the number of an order that was placed later.

Constraint Checks

Something doesn't

have to be truly

impossible. It just has

to be unlikely enough

that it would be worth

your time to investigate

why the program

gave that result.

132Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Embed the correct test result in a set of test data. For example:

● Add a comment field to a database of test case records.

● Provide a checksum, hash code, or digital signature to

authenticate the result.

Similarly, you could build functions into the program under test that

serve as the equivalent of embedded test data by providing the

should-be-correct result on demand.

Self-Verifying Data

133Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Regression testing is the most common example of a technique built

around saved results.

● Run a test.

● If the program passes, keep its output data.

● After a new build, run the test again.

● Check whether the new test results match the saved test

results.

Comparison With Saved Results

134Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Specification-based testing checks the product against every factual

claim made about the product in the specification or any other

document that the program must verify against. (A factual claim is

any statement that can be shown to be true or false.)

● When you think about every claim, you are thinking about

specification-based testing in terms of coverage.

● When you think about what claims,you are treating the

specification as an oracle.

Comparison With Specifications or
Other Authoritative Documents

135Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Run a test

● As part of the normal (or test-customized) operation of the

program, the program runs diagnostics. If the test triggers an

unusual state, the program reports a diagnostic issue.

OR

● The tester runs a diagnostic immediately after running the test.

The diagnostics can expose effects of the test that would otherwise be

invisible, such as memory corruption, assignment of incorrect values to

internal variables, tasks that were only half-completed, etc.

Diagnostics-Based Testing

An oracle is a mechanism or

heuristic principle for determining

whether a program has a problem.

Here, the diagnostics are the

mechanism. They might not tell you

what the ”right” behavior is;

they alert you that something

looks wrong.

136Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

You have an oracle whenever you can compare your program's

behavior to a model of how it should behave.

When a program is in any given state, it will ignore some inputs (or

other events) and respond to others. The program's response takes

it to its next state. This is a state transition.

You can do state-model-based testing if you have:

● a state model that ties inputs to transitions, and

● ability to tell whether the program is actually in the state

predicted by the model.

Verifiable State Models

We emphasize the

oracle aspect of state

testing to the extent

that we can make a

detailed comparison

between the expected

state and the

test-result state.

137Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

Desired-Result Techniques Focus
on a Specific Decision or Document

You are doing

document-focused

testing if you run a

set of tests primarily to

collect data needed to

fill out a form or create

a clearly-structured

report.

● Build verification

● Confirmation testing

● User acceptance testing

● Certification testing

138Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

It would waste your time to test a build that had problems like

these:

● Missing critical features or files

● Built (accidentally) with an outdated version of some module(s)

● Bugs that significantly destabilize the version

Many groups follow the rule that if the program fails ANY build

verification tests, the build is sent back to the programmers without

further testing.

The suite of BVTs is typically automated, and contains a relatively

small number of tests.

Build Verification

Build Verification

Testing is focused

around a desired

result: Determine

whether the build is

complete enough and

stable enough to

warrant more

thorough testing.

139Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● Test groups might run a carefully designed suite of

confirmation tests when their company is required to

demonstrate that the program has certain characteristics or

operates in a certain way.

● For example, some contracts for custom software provide for a

user acceptance test and set detailed expectations about the

testing. The testers might create a suite of demonstrations that

the program meets these expectations. (These tests might or

might not be the actual suite used by the customer for

acceptance testing.)

Confirmation Testing

140Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

In early times, most software development was done under contract. A customer (e.g.

the government) hired a contractor (e.g. IBM) to write a program. The customer and

contractor would negotiate the contract. Eventually the contractor would say that the

software is done and the customer or her agent (such as an independent test lab)

would perform acceptance testing to determine whether the software should be

accepted.

If software failed the tests, it was unacceptable and the customer would refuse to pay

for it until the software was made to conform to the promises in the contract (which

were what was checked by the acceptance tests).

User Acceptance Testing

This is the same

meaning we adopted

in Foundations.

As we noted then,

there are many other

definitions of

”acceptance testing.”

141Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

The test group might be required to certify (attest in writing) that the product has

specific characteristics. For example:

● Certify compliance with IEEE Standard for Floating-Point Arithmetic (Std 754).

● Certify that all classes of the code were inspected.

● Certify the software was tested to a level of 100% statement-and-branch

coverage.

The test group does whatever tasks are needed to be able to honestly make the

required certification. (It may be as simple as running a standard certification suite.) To

the extent that these tasks include testing, they may not look like good testing. The test

group will probably do the minimum necessary for the certification. Narrowing the

focus is part of the technique.

Certification Testing

142Copyright © 2020 AltomLecture 1 - A Survey of Test Techniques

● You should know what function tests are and how to tour a program to find

most of its functions.

● When someone describes a technique to you, you should be able to figure out

its scope and whether it is focused mainly on:

○ coverage

○ risk

○ who does the testing

○ how to do the test

○ how to evaluate the test

○ certifying the program meets a specific criterion

● You should be able to imagine relying on that technique but changing it (or

using other techniques) to strengthen the areas that are out of focus (e.g.

improve coverage or be more sensitive to risk or adapt the technique for end

users).

Review

143Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Copyright © 2020 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and Rebecca Fiedler, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Test Design
Lecture 2
Risk-Based Testing

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

144Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Course Overview: Fundamental Topics

 1. Function testing & tours
A taxonomy of test techniques

 2. Risk-based testing, failure mode analysis and quicktests
Testing strategy. Introducing the Heuristic Test Strategy Model

 3. Specification-based testing
Work on your assignment

 4. Use cases and scenarios
Comparatively evaluating techniques.

 5. Domain testing: traditional and risk-based
When you enter data, any part of the program that uses that data is a risk. Are you designing for that?

 6. Testing combinations of independent and interacting variables.
Combinatorial, scenario-based, risk-based and logical-implication analyses of multiple variables.

145Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Required
● Quicktests: Hendrickson, E. (2006). “Test heuristics cheat sheet”. testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf

● Guidewords: Bach, J. (2019). “Heuristic test strategy model”, Version 5.7.5. https://www.satisfice.com/download/heuristic-test-strategy-model

● Failure modes: Vijayaraghavan, G., & Kaner, C.(2003). “Bug taxonomies: Use them to generate better tests”. Software Testing Analysis &
Review Conference. http://www.testingeducation.org/a/bugtax.pdf

Useful to skim
Quicktests
● Edgren, R. (2011). “The Little Black Book on Test Design”. http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/

● Hunter, M. J. (2010). “You are not done yet”. http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

● Kaner & Johnson (1999) “Styles of exploration”, 7th Los Altos Workshop on Software Testing www.kaner.com/pdfs/LAWST7StylesOfExploration.pdf

● Whittaker, J.A. (2002) How to Break Software
Guidewords
● HAZOP Guidelines (2011). “Hazardous Industry Planning Advisory Paper No. 8”, NSW Government Department of Planning.

https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf

Failure modes
● Kaner (1988), Testing Computer Software - list of common software problems

Today’s Readings

http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
https://www.satisfice.com/download/heuristic-test-strategy-model
http://www.testingeducation.org/a/bugtax.pdf
http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf
http://www.kaner.com/pdfs/LAWST7StylesOfExploration.pdf
https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf

146Copyright © 2020 AltomLecture 2 - Risk-Based Testing

In Lecture 1, we:

● Studied two related techniques (touring and function testing).

● Raced through a zillion other techniques.

● Studied seven common attributes of test techniques.

Test Design

147Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Today, we look at a few concepts important for developing a testing

strategy:

● Test cases

● Comparing test techniques in terms of their strengths and

blind spots

● Context factors that influence test strategy

● Information objectives that drive test strategy

Context and

information

objectives are

(or should be)

the drivers of any

testing strategy.

Test Strategy

148Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Should your designs focus on procedure?

What's a Test Case?

“A set of test inputs, execution conditions, and expected results developed for a

particular objective, such as to exercise a particular program path or to verify

compliance with a specific requirement.“ (IEEE)

“A test idea is a brief statement of something that should be tested. For example,

if you're testing a square root function, one idea for a test would be ‘test a

number less than zero’. The idea is to check if the code handles an error case.“

(Marick, http://www.exampler.com/testing-com/tools.html)

Focus on the test idea?

http://www.exampler.com/testing-com/tools.html

149Copyright © 2020 AltomLecture 2 - Risk-Based Testing

We're more interested in the informational goal.

The point of running the test is to gain information, for example

whether the program will pass or fail the test.

Test Cases

A test case

is a question

you ask the

program.

150Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Your testing strategy is

● the guiding framework for deciding what tests (what test

techniques) are best suited to your project,

● given your project's objectives and constraints (your context)

● and the informational objectives of your testing.

Testing Strategy
See Bach’s “Heuristic Test Planning: Context Model“
https://www.satisfice.com/download/rapid-software-testing-context-model

Testing Strategy

https://www.satisfice.com/download/rapid-software-testing-context-model

151Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Attributes of “Good“ Tests
(More on this in Lecture 4)

Most tests have these

attributes to some

degree. To evaluate a

test, imagine possible

tests that would have

more of the attribute

or less of it. Compared

to those, where does

this one stand?

● Power

● Valid

● Value

● Credible

● Representative

● Non-redundant

● Motivating

● Performable

● Reusable

● Maintainable

● Information value

● Coverage

● Easy to evaluate

● Supports troubleshooting

● Appropriately complex

● Accountable

● Affordable

● Opportunity Cost

152Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● Harsh constraints

○ Complete testing is impossible

○ Finite project schedules and budget

○ Limited skills of the test group

● You might do your testing before, during or after the product under test is

released.

● Improvement of product or process might or might not be an objective of

testing.

● You test on behalf of stakeholders

○ Project manager, marketer, customer, programmer, competitor, attorney

○ Which stakeholder(s) this time?

■ What information are they interested in?

■ What risks do they want to mitigate?

Everyone Tests in a Context

As service providers,

it is our task to learn

(or figure out) what

services our clients

want or need this time,

and under these

circumstances.

153Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Everyone Tests in a Context

● Who are the stakeholders with influence?

● Are there non-stakeholders with influence (e.g.

regulators)?

● What are the goals and quality criteria for the project?

● What skills and resources (such as time, money, tools,

data, technology and testability support) are available?

● What's in the product?

● How could it fail?

● Potential consequences of potential failures?

● Who might care about which consequence of what failure?

● How to recognize failure?

● How to decide what result variables to attend to?

● How to decide what other result variables to attend to in the

event of intermittent failure?

● How to troubleshoot and simplify a failure, so as to better

○ motivate a stakeholder who might advocate for a fix?

○ enable a fixer to identify and stomp the bug more

quickly?

● How to expose, and who to expose to, undelivered benefits,

unsatisfied implications, traps, and missed opportunities?

Examples of context factors that drive and constrain testing. These differ from project to project:

154Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Everyone Tests in a Context

PROJECT 1 Resources PROJECT 2 Resources

● Mature product.

● Lots of automated GUI regression test code, created in

previous versions.

● Some testers have good programming skills and know the

regression tool's language.

● Time available in the schedule for a thorough round of

regression test code maintenance.

● New product. Tight schedule.

● No pre-existing tests.

● Testers know the subject matter, the product environment,

and some are excellent bug hunters.

● None of the testers are skilled programmers.

If I was managing this project, I would probably plan for

a lot of automated GUI regression testing.

If I was managing this project, I'd probably plan for intensely

exploratory testing: Risk-focused, no automated regression,

not much test documentation.

Context: Imagine 2 companies making similarly-capable products for the same market.

155Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Your goal should NOT be to impose “best practices“ or “standards“

on your client.

Your goal should be to help your client do the best that it can under

the circumstances.

Testing Strategy in Context

Sometimes,

doing the best you

can under the

circumstances

includes changing

the circumstances.

156Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● Find important bugs

● Assess the quality of the product

● Help managers assess the progress of the project

● Help managers make release decisions

● Block premature product releases

● Help predict and control product support costs

● Check interoperability with other products

● Find safe scenarios for use of the product

● Assess conformance to specifications

● Certify the product meets a particular standard

● Ensure the testing process meets accountability standards

● Minimize the risk of safety-related lawsuits

● Help clients improve product quality & testability

● Help clients improve their processes

● Evaluate the product for a third party

Common Information Objectives

Different objectives

require different

testing tools and

strategies and will

yield different tests,

test documentation

and test results.

157Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Think of the design task as applying the strategy to the choosing of specific test techniques and generating test ideas and

supporting data, code or procedures:

● Who’s going to run these tests? (What are their skills/knowledge)?

● What kinds of potential problems are they looking for?

● How will they recognize suspicious behavior or “clear“ failure? (Oracles?)

● What aspects of the software are they testing? (What are they ignoring?)

● How will they recognize that they have done enough of this type of testing?

● How are they going to test? (What are they actually going to do?)

● What tools will they use to create or run or assess these tests? (Do they have to create any of these tools?)

● What is their source of test data? (Why is this a good source? What makes these data suitable?)

● Will they create documentation or data archives to help organize their work or to guide the work of future testers?

● What are the outputs of these activities? (Reports? Logs? Archives? Code?)

● What aspects of the project context will make it hard to do this work?

Strategy and Design

158Copyright © 2020 AltomLecture 2 - Risk-Based Testing

We can't teach you enough about design in this course to make you

effective at developing a test strategy for a complex product.

What we hope to do is teach you:

● enough

● about enough techniques

● for you to understand how much flexibility is available to you

● for tailoring your testing activities

● to your information needs

● in your context.

Techniques and Strategy

159Copyright © 2020 AltomLecture 2 - Risk-Based Testing

In software testing, we think of risk on three dimensions:

● How the program could fail

● How likely it is that the program could fail in that

way

● What the consequences of that failure could be

Risk

For testing purposes,

the most important concern is:

● how the product can fail.

For project management:

● how likely

● what consequences

The possibility of suffering harm or loss

160Copyright © 2020 AltomLecture 2 - Risk-Based Testing

For the test designer, the essence of risk-based testing is:

● Imagine how the product can fail

● Design tests to expose these (potential) failures

Risk-Based Testing

161Copyright © 2020 AltomLecture 2 - Risk-Based Testing

1. Quicktests

2. Exploratory Guidewords

3. Failure Mode & Effects Analysis

4. Project-level risks

This list of quicktests evolved out of a bug taxonomy (Testing Computer Software) created to give testers ideas for testing

common bugs. We extended it in presentations to the 7th Los Altos Workshop on Software Testing (Exploratory Testing, July

1999), http://www.kaner.com/pdfs/LAWST7StylesOfExploration.pdf. Several additions come from Bach & Bolton's Rapid Software

Testing course. Another useful collection of quicktest ideas, in an very interesting structure, was developed in Alan Jorgensen

(1999)'s Software Design Based on Operational Modes https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf. Whittaker, J.A. (2002)

How to Break Software presented an expansion of this work, with more examples.

Different Approaches to Risk

http://www.kaner.com/pdfs/LAWST7StylesOfExploration.pdf
https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf

162Copyright © 2020 AltomLecture 2 - Risk-Based Testing

A quicktest is

● inexpensive,

● easy to design, and

● requires little knowledge, preparation or time to perform.

Underlying every quicktest is a theory of error.

If an error is so common that you are likely to see it

● in many applications,

● on several platforms

you can develop a test technique optimized for that type of error.

Quicktests?

Use quicktests because

they are effective.

If a type of test doesn’t

expose many bugs

in your environment,

use something else.

163Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Move the cursor to an input field. Put your shoe on the keyboard.

Go to lunch. Basically, you’re using the auto-repeat on the keyboard

for a cheap stress test.

● This was one of the first tests for input buffer overflows.

● It was an effective test for a remarkably long time.

Classic Quicktest: Shoe Test

This is a trivially simple

introductory example.

With all the valuable

ideas for quicktesting

that follow, it is

disappointing when a

student relies on this

as an example in an

exam...

164Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Traditional boundary testing:

● All you need is the variable, and its possible values.

● You need very little information about the meaning of the

variable (why people assign values to it, what it interacts with).

● You test at boundaries because miscoding of boundaries is a

common error.

Another Classic Example of a Quicktest

Intended domain:

● 0 < X < 100

● Same as 1 ≤ X ≤ 99

Common coding errors:

● 0 ≤ X (accepts 0)

● X ≤ 100 (accepts 100)

● 1 < X (rejects 1)

● X < 99 (rejects 99)

165Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Simple boundary errors could be easily exposed by code inspection. So are many other

types of bugs exposed by quicktests.

The obvious question:

● Why run quicktests instead of doing more thorough code inspection?

Our answer:

● As testers, we test the code that we get.

○ If you routinely find certain types of errors, you should design tests that

are optimized to find these types of errors cheaply, quickly, and without

requiring tremendous skill.

Why Are Quicktests Black Box?

166Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Common Ideas for Quicktests

This is a convenient

way to categorize a lot

of quicktests, but it’s

not an authoritative

structure. You can sort

the same tests in many

ways.

● User interface design errors

● Boundaries

● Overflow

● Calculations and operations

● Initial states

● Modified values

● Control flow

● Sequences

● Messages

● Timing and race conditions

● Interference tests

● Error handling

● Failure handling

● File system

● Load and stress

● Configuration

● Multivariable relationships

167Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Tour the user interface for things that are confusing, unappealing,

time-wasting or inconsistent with relevant design norms.

Examples of test ideas:

● Check for conformity to Apple’s Human Interface Guidelines

● Read menus, help and other onscreen instructions

● Try out the features

● Watch the display as you move text or graphics

● Force user errors. Intentionally misinterpret instructions, do

something “foolish“ and see what happens

User Interface Design Errors

168Copyright © 2020 AltomLecture 2 - Risk-Based Testing

The program expects variables to stick within a range of permissible values.

Examples of test ideas:

● Try inputs that:

○ are too big or too small

○ are too short or too long

○ create an out-of-bounds calculation

○ combine to create out-of-bounds output

■ can’t be stored

■ can’t be displayed

■ can’t be passed to external app

Boundaries

169Copyright © 2020 AltomLecture 2 - Risk-Based Testing

These values are far too large or too small for the program to handle.

Examples of test ideas:

● Input empty fields or 0’s

● Paste huge string into an input field

● Calculation overflows (individual inputs are OK but an operation (add, multiply,

string concatenate) yields a value too big for the data type, e.g. integer overflow)

or for a result variable that will store or display the result

● Read/write a file with too many elements (e.g. overflow a list or array)

“Overflow“ values are

too big for the program

to process or store. A

value can be out of

bounds but not be so

big that it causes an

overflow.

Overflow or Underflow

170Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Calculation involves evaluation of expressions, like 5*2. Some expressions evaluate to

impossible results. Others can’t be evaluated because the operators are invalid for the

type of data.

Examples of test ideas:

● Enter data of the wrong type (e.g. non-numbers into a numeric field)

● Force a divide by zero

● Force a divide by near-zero

● Arithmetic operations on strings

● String operations on numbers

● Arithmetic involving multiple numeric types: If you get a result, is it the type you

expect?

Invalid Calculations & Operations

Most errors that create

a risk of invalid

operations or

impossible calculations

are either caught at

compile time or are

more easily visible to

a reader of the code.

171Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Caution:

● Some people think they can check calculations primarily with

quicktests.

● Many calculations involve several variables that all have to be

set carefully to achieve a powerful test.

● Because you have to know what you're doing, calculation tests

are often not quicktests.

Invalid Calculations & Operations

172Copyright © 2020 AltomLecture 2 - Risk-Based Testing

What value does a variable hold the first time you use it?

A variable might be:

● Uninitialized (not explicitly set to any value; holds random bits)

● Initialized (set to starting value, often 0; often given default value later)

● Default (set to a meaningful starting value)

● Assigned or calculated (intentionally set to a value appropriate to current

need)

● Carried over (brings a previously assigned value to a new calculation that might

expect the default value)

Initial States

A variable can be in

any one of these 5

states. You have a bug

if the program

operates on the

assumption that the

variable is in one of the

other states.

173Copyright © 2020 AltomLecture 2 - Risk-Based Testing

1. Start with a fresh copy of the program (no saved data). Enter data into one

dialog. Then do an operation (calculation or save) that uses data that you

explicitly entered and data that have not been entered (you have not done any

operation that would display those data).

Are the unassigned data:

○ Uninitialized?

○ Initialized but to inappropriate values?

○ Default values?

2. Start with a variable that has a reasonable value. Enter an impossible value and

try to save it, or erase the value. Does the program insert the old value? Default

value? Something else?

Initial States Examples

We explored many

initial state bugs in

Testing Computer

Software.

Whittaker also

illustrates several

throughout How to

Break Software.

174Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Set a variable to a value; then change it. This creates a risk if some other part of the

program depends on this variable.

Examples of test ideas:

● In a program that calculates sales tax, buy something, calculate the tax, then

change the person's state of residence.

● Change the location (address) of a device (make the change outside the

program under test).

● Specify the parameters for a container of data (e.g. a frame that displays data,

or an array that holds a number of elements). Then increase the amount of

data. If there is auto-resize, increase and then decrease several times.

Modified Values

175Copyright © 2020 AltomLecture 2 - Risk-Based Testing

The control flow of a program describes what it will do next. A control flow error occurs

when the program does the wrong next thing.

Example of a test idea:

A jump table associates an address with each event in a list. (An event might be a

specific error or pressing a specific key, etc.) Press that key, jump to (or through the

pointer in) the associated address.

When the program changes state, it updates the addresses, so the same actions do

new things. If it updates the list incompletely or incorrectly, some new responses will

be wrong. Table-driven programming errors are often missed by tests focused on

structural coverage.

Control Flow

If the programmers

achieved a high level of

structural coverage in

their testing, the control

flow bugs that are left

are usually triggered by

special data values,

interrupts or exceptions,

race conditions or

memory corruption.

176Copyright © 2020 AltomLecture 2 - Risk-Based Testing

A program might pass a simple test but fail the same test embedded in a longer

sequence.

Examples of test ideas:

● Repeat the same test many times, especially good targets:

○ Anything that creates an error message

○ Anything that halts a task in the middle. Exception-handler may not free

up memory or reset variables the program was in the middle of

calculating.

○ Anything that makes the program call itself (recursion) (Will this

terminate? Will it exhaust system resources before terminating?)

● Run a suite of automated regression tests in a long randomized sequence.

Sequences

177Copyright © 2020 AltomLecture 2 - Risk-Based Testing

If the program communicates with an external server or system, corrupt the messages

between them.

Examples of test ideas:

● Corrupt the connection string. Some programs have a configuration file that

includes a connection string to a remote resource, such as the database. What if

the string is a little wrong? Can the program gain access anyway? How will it

function without access?

● Program A sends a message to B, expecting a response. Normally, B will report

success or failure. Corrupt the response so that it has elements of both (success

and failure) and see which (if either) Program A believes.

● Corrupt the response so that it contains huge strings. Will this overflow a buffer

or overwhelm Program A's error processing? (see Jorgensen, A.A. (2003).

“Testing with hostile data streams”.

http://cs.fit.edu/media/TechnicalReports/cs-2003-03.pdf).

Messages

http://cs.fit.edu/media/TechnicalReports/cs-2003-03.pdf

178Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Timing failures can happen if the program needs access to a resource by a certain time,

or must complete a task by a certain time. This is a race condition if the program

expects event A before B but gets B first.

Examples of test ideas:

● When providing input to a remote computer, don’t complete entry until just

before, just as, or just after the application times out (stops listening for your

input).

● Delay input from a peripheral by making it busy, paused, or unavailable.

Timing, Including Race Conditions

179Copyright © 2020 AltomLecture 2 - Risk-Based Testing

In interference testing, you do something to interfere with a task in progress. This

might cause a timeout or a failed race condition. Or the program might lose data in

transmission to/from an external system or device.

Examples of test ideas:

● Create interrupts

● Change something the task depends on

● Cancel a task in progress

● Pause a task in progress

● Compete for a resource needed by the task

● Swap task-related code or data out of memory

Interference Tests

180Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Generate interrupts:

● from a device related to the task

○ e.g. pull out a paper tray, perhaps one that isn’t in use

while the printer is printing

● from a device unrelated to the task

○ e.g. move the mouse and click while the printer is

printing

● from a software event

○ e.g. set another program's (or this program's)

time-reminder to go off during the task under test

Interference Tests: Interrupts

181Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Change something this task depends on:

● swap out a disk

● disconnect/reconnect with a new IP address

● disconnect/reconnect with a new router that uses different

security settings

● change the contents of a file that this program is reading

● change the printer that the program will print to (without

signaling a new driver)

● change the video resolution

Interference Tests: Change

182Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● Cancel the task

○ at different points during its completion

● Cancel some other task while this task is running

○ a task that is in communication with this task (the core

task being studied)

○ a task that will eventually have to complete as a

prerequisite to completion of this task

○ a task that is totally unrelated to this task

Interference Tests: Cancel

183Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Find some way to create a temporary interruption in the task.

● Pause the task

○ for a short time

○ for a long time (long enough for a timeout, if one will

arise)

● For example,

○ Put the printer on local

○ Sleep the computer

○ Put a database under use by a competing program, lock

a record so that it can’t be accessed—yet.

Interference Tests: Pause

184Copyright © 2020 AltomLecture 2 - Risk-Based Testing

A “process“ is a

program, typically one

that is running now,

concurrently with

other programs

(processes).

Swap a process out of memory while it's running

● (e.g. change focus to another application; keep loading or adding applications

until the application under test is paged to disk.)

● Leave it swapped out for 10 minutes (whatever the timeout period is). Does it

come back? What’s its state? What’s the state of processes that are supposed to

interact with it?

● Leave it swapped out much longer than the timeout period. Can you get it to the

point where it is supposed to time out, then send a message that is supposed to

be received by the swapped-out process, then time out on the time allocated for

the message? What are the resulting state of this process and the one(s) that

tried to communicate with it? Swap a related process out of memory while the

process under test is running.

Interference Tests: Swap

185Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● Compete for a device (such as a printer):

○ Put device in use, then try to use it from software under test.

○ Start using device, then use it from other software.

○ If there is a priority system for device access, use software that has

higher, same and lower priority access to the device before and during

attempted use by software under test.

● Compete for processor attention:

○ Some other process generates an interrupt (e.g. ring into the modem, or

a time-alarm in your contact manager).

○ Try to do something during heavy disk access by another process.

● Send this process another job while one is underway

Interference Tests: Compete

186Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Errors in dealing with errors are among the most common bugs.

These include:

● failure to anticipate the possibility of errors and protect against them

● failure to notice error conditions, and

● failure to deal with detected errors in a reasonable way.

Examples of test ideas:

● Make the program generate every error message. If two errors yield the same

message, create both.

● After eliciting an error message, repeat the error several times. Check for a

memory leak.

● After eliciting an error message, keep testing. Look for side effects of the error.

Error Handling

187Copyright © 2020 AltomLecture 2 - Risk-Based Testing

After you find a bug, you can look for related bugs.

Examples of test ideas:

● Keep testing after the failure. What vulnerabilities does

recovery from the failure expose? (For example, data might not

be properly saved after an exception-handling exit from a

task.)

● Test for related bugs while troubleshooting this failure. Look

for more serious or different symptoms by varying the test

conditions.

● Test for related bugs after this bug was fixed.

Failure Handling

188Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Read or write to files under conditions that should cause a failure. How does the

program recover from the failure?

Examples of test ideas:

● Read or write:

○ To a nonexistent file

○ To a locked (read-only) file

○ To a file that's open in another process (maybe another instance of this

process) but not locked

○ To a file when you have insufficient privileges

○ To a file that exceeds the maximum file size

○ To a file that will overfill the disk (when writing) or memory (when reading)

○ To a disk with bad sectors

○ To a remote drive that is not connected

○ To a drive that is disconnected during the read or write

File-System

189Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Significant background activity eats resources and adds delays. This

can yield failures that would not show up on a quiet system.

Examples of test ideas:

● Test (generally) on a significantly busy system.

● Run several instances of the same application in parallel. Open

the same files.

● Try to get the application to do several tasks in parallel.

● Send the application significant amounts of input from other

processes.

Load

190Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Check the application’s compatibility with different system

configurations:

● Progressively lower memory and other resources until the

product gracefully degrades or ungracefully collapses.

● Change the letter of the system hard drive.

● Turn on “high contrast“ and other accessibility options.

● Change localization settings.

Configuration Problems

191Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Any relationship between two variables is an opportunity for a

relationship failure.

Examples of test ideas:

● Test with values that are individually valid but invalid together

(e.g. February 30).

● Try similar things with dissimilar objects together (e.g. copy,

resize or move) graphics and text together.

Multivariable Relationships

192Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Some people (incorrectly) characterize exploratory testing as if it

were primarily a collection of quicktests.

As test design tools, these are like good candy:

● Yummy,

● Popular,

● Impressive, but

● Not very nutritious. (They don't take you to the deeper issues

of the program.)

Quicktests Have Limits

Quicktests are a

great way to

START testing a

product.

193Copyright © 2020 AltomLecture 2 - Risk-Based Testing

For the test designer, the essence of risk-based testing is:

a. Imagine how the product can fail

 b. Design tests to expose these (potential) failures.

We've seen how quicktests address these tasks:

a. Use your experience (or the experience of others) to build a

 list of failures that are commonplace across many types of

 programs

b. Design straightforward tests that are focused on these

 specific bugs.

Summary: Quicktests & Risk-Based Testing

194Copyright © 2020 AltomLecture 2 - Risk-Based Testing

1. Quicktests

2. Exploratory Guidewords

3. Failure Mode & Effects Analysis

4. Project-Level Risks

Different Approaches to Risk

195Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Guidewords are widely used in HAZOPs (hazard & operability

studies). Typically, a team analyzes a system together, covering each

part of the system under evaluation using the guide words as a list

of risk ideas.

Guidewords

See HAZOP Guidelines (2011). Hazardous Industry Planning Advisory Paper No. 8, NSW Government Department of
Planning_https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop
-guidelines-2011-01.pdf

https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf
https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf

196Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Today's presentation of HTSM is just an overview.

We come back to it in more detail in Lecture 3, and

you will learn to apply it in your assignment.

Guidewords

See https://www.satisfice.com/download/heuristic-test-strategy-model

https://www.satisfice.com/download/heuristic-test-strategy-model

197Copyright © 2020 AltomLecture 2 - Risk-Based Testing

HTSM provides a customizable three-level collection of guide words.

Example:

● Product elements

○ Structure

■ Code

As with the HAZOPS use of guide words, the goal is to evaluate each

part of the system under test from several directions, identifying a

diverse collection of risks.

Heuristic Test Strategy Model

198Copyright © 2020 AltomLecture 2 - Risk-Based Testing

These categories lay out the context of the product, including factors that constrain

what can be done in testing or that facilitate testing or test management.

● Mission

● Information

● Developer relations

● Test team

● Equipment & tools

● Schedule

● Test items

● Deliverables

HTSM: Project Environment

199Copyright © 2020 AltomLecture 2 - Risk-Based Testing

These categories lay out the content of the application under test.

This is what you’re testing.

● Structure

● Function

● Data

● Interfaces

● Platform

● Operations

● Time

HTSM: Product Elements

200Copyright © 2020 AltomLecture 2 - Risk-Based Testing

HTSM: Quality Criteria

Operational criteria Development criteria

● Capability

● Reliability

● Usability

● Charisma

● Security

● Scalability

● Compatibility

● Performance

● Installability

● Supportability

● Testability

● Maintainability

● Portability

● Localizability

201Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● Pick a guide word (e.g. interfaces).

● Identify “all“ aspects of the program that match the guide word.

● One by one, what could go wrong with each?

● You can also combine guide words

○ From different categories (for example: Product elements:

interfaces with Project environment: mission.)

○ From the same category (for example: Product elements:

interfaces with Product elements: data.)

Using HTSM to Guide Testing

This is a useful

structure for

exploratory

testing.

202Copyright © 2020 AltomLecture 2 - Risk-Based Testing

1. Quicktests

2. Exploratory Guidewords

3. Failure Mode & Effects Analysis

4. Project-level risks

For the test designer, the essence of risk-based testing is:

 a) Imagine how the product can fail.

 b) Design tests to expose these (potential) failures.

Different Approaches to Risk

203Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● A failure mode is, essentially, a way that the program could fail

● One way to structure risk-based testing is with a list of failure

modes

○ also called a risk catalog

○ or a bug taxonomy

● Use each failure mode as a test idea (something to create a

test for)

Failure Mode Lists/Risk Catalogs/
Bug Taxonomies

204Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Testing Computer Software listed almost 500 common bugs. We

used the list for:

● Generating test ideas (Getting unstuck)

● Structuring exploratory testing

● Auditing test plans

● Training new staff into risk-oriented thinking

Our First List of Quicktests Was
Derived From a Bug Catalog

See http://www.testingeducation.org/BBST/testdesign/Kaner_Common_Software_Errors.pdf

http://www.testingeducation.org/BBST/testdesign/Kaner_Common_Software_Errors.pdf

205Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Example: Portion of Risk Catalog
for Installer Products

From Bach, J. (1999). “Heuristic risk-based testing”.
https://www.satisfice.com/download/heuristic-risk-based-software-testing

Wrong files installed Files clobbered Other apps clobbered

● temporary files not cleaned up

● old files not cleaned up after upgrade

● unneeded file installed

● needed file not installed

● correct file installed in the wrong

place

● older file replaces newer file

● user data file clobbered during

upgrade

● file shared with another product is

modified

● file belonging to another product is

deleted

https://www.satisfice.com/download/heuristic-risk-based-software-testing

206Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Giri Vijayaraghavan and Ajay Jha followed similar approaches in developing their catalogs:

● Used HTSM as a starting structure

● Filled-in real life examples of failures from magazines, web discussions, some corporations’ bug databases, interviews

with people who had tested their class of products

● Extrapolated to other potential failures

● Extended to potential failures involving interactions among components

See:

● “A Risk Catalog for Mobile Applications”, http://www.testingeducation.org/articles/AjayJha_Thesis.pdf

● “A Taxonomy of E-Commerce Risks and Failures”, http://www.testingeducation.org/a/tecrf.pdf

● “Bug taxonomies: Use them to generate better tests”, http://www.testingeducation.org/a/bugtax.pdf

Building a Failure Mode Catalog

http://www.testingeducation.org/articles/AjayJha_Thesis.pdf
http://www.testingeducation.org/a/tecrf.pdf
http://www.testingeducation.org/a/bugtax.pdf

207Copyright © 2020 AltomLecture 2 - Risk-Based Testing

FMEA is a more common, formalized approach to risk-based evaluation of many types

of products.

Failure modes

Consider the product in terms of its components. For each component:

● Imagine how it could fail (failure modes). For each failure mode, ask questions:

○ What would that failure look like?

○ How would you detect that failure?

○ How expensive would it be to search for that failure?

Failure Mode & Effects Analysis

Failure mode analysis

is an effective vehicle

for generating test

idea lists.

208Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Widely used for safety analysis.

Effect analysis

● For each failure mode:

○ Who would that failure impact?

○ How much variation would there be in

the effect of the failure?

○ How serious (on average) would that

failure be?

○ How expensive would it be to fix the

underlying cause?

● On the basis of the analysis, decide whether it

is cost effective to search for this potential

failure.

Failure Mode & Effects Analysis

“Accident investigators tend to take an expansive approach

when determining the “cause“ of an accident. Aware that

regulations are influenced by accident reports,

investigators often seek to effect the greatest possible

change. “It's better if you don't find the exact cause

because then only one thing will get fixed,“ according to an

NTSB investigator. Instead, for every serious accident the

NTSB recommends a laundry list of changes in FAA

regulations.“

Cheit R.E. (1990, 71) Setting Safety Standards: Regulation in

the Public and Private Sectors.

http://ark.cdlib.org/ark:/13030/ft8f59p27j/

http://ark.cdlib.org/ark:/13030/ft8f59p27j/

209Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Generate test ideas

● Find a potential defect in the list.

● Ask whether the software under test could have this defect.

● If it is theoretically possible that the program could have the defect, ask how

you could find the bug if it was there.

● Ask how plausible it is that this bug could be in the program and how serious

the failure would be if it was there.

● If appropriate, design a test or series of tests for bugs of this type.

Using Failure Mode Catalogs

210Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Provide a structure for exploratory testing

Exploratory software testing is

● a style of software testing that

● emphasizes the personal freedom and responsibility of the individual tester

● to continually optimize the value of her work

● by treating

○ test-related learning,

○ test design,

○ test execution, and

○ test result interpretation as

● mutually supportive activities that run in parallel throughout the project.

As you learn more

about how the product

can fail, design new

tests to explore

potential failures.

And do new research

(or follow new

hunches) to find more

new categories of ways

the product can fail.

Using Failure Mode Catalogs

211Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Audit test plans

The “test plan“ is a document that describes the planned testing. Often, this document

is very detailed. In some companies use the test plan to fully specify the testing that will

be done.

● Pick categories to sample from the test idea list.

● From each category, find a few potential defects in the list.

● For each potential defect, ask whether the software under test could have this

defect.

● If it is theoretically possible that the program could have the defect, ask whether

the test plan could find the bug if it was there.

Using Failure Mode Catalogs

212Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Training new staff into risk-oriented thinking

● Expose staff to what can go wrong.

● Challenge them to design tests that could trigger those

failures.

Using Failure Mode Catalogs

213Copyright © 2020 AltomLecture 2 - Risk-Based Testing

1. Quicktests

2. Exploratory Guidewords

3. Failure Mode & Effects Analysis

4. Project-Level Risks

For the test designer, the essence of risk-based testing is:

 a) Imagine how the product can fail.

 b) Design tests to expose these (potential) failures.

Different Approaches to Risk

214Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project-level risk analyses consider what might make the project as a whole fail.

Project risk management involves:

● Identifying issues that might cause the project to fail or fall behind schedule or

cost too much or alienate key stakeholders

● Analyzing potential costs associated with each risk

● Developing plans and actions to reduce the likelihood of the risk or the

magnitude of the harm

● Continuous assessment or monitoring of the risks (or the actions taken to

manage them)

Project-Level Risk Analysis

215Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Classic, Project-Level Risk Analysis

The problem for our purposes is that the

traditional analysis at this level is more oriented

to project managers. It doesn't give you much

guidance as to how or what to test.

216Copyright © 2020 AltomLecture 2 - Risk-Based Testing

New things: less likely to have revealed its bugs yet.

New technology: same as new code, plus the risks of unanticipated
problems.

Learning curve: people make more mistakes while learning.

Changed things: same as new things, but changes can also break
old code. Poor control: without SCM, files can be overridden or lost.

Project Risk Heuristics:
Where to Look for Errors

As testers, you

can use risks

associated with

the running of the

project to suggest

specific ideas that

can guide your

testing.

217Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Late change: rushed decisions, rushed or demoralized staff lead to
mistakes.

Rushed work: some tasks or projects are chronically underfunded
and all aspects of work quality suffer.

Fatigue: tired people make mistakes.

Distributed team: a far flung team often communicates less or less
well.

Other staff issues: alcoholic, mother died, two programmers who
won’t talk to each other (neither will their code)...

Project Risk Heuristics:
Where to Look for Errors

Weinberg provides

useful insights into the

challenges of rushed

work and late changes.

See Weinberg, G.

(1993). Quality Software

Management. Volume 2:

First Order Measurement.

Chapter 10.

218Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Surprise features: features not carefully planned may have
unanticipated effects on other features.

Third-party code: external components may be much less well
understood than local code, and much harder to get fixed.

Unbudgeted: unbudgeted tasks may be done shoddily.

Ambiguous: ambiguous descriptions (in specs or other docs) lead to
incorrect or conflicting implementations.

219Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Conflicting requirements: ambiguity often hides conflict, result is
loss of value for some person.

Mysterious silence: when something interesting or important is not
described or documented, it may have not been thought through, or
the designer may be hiding its problems.

Unknown requirements: requirements surface throughout
development. Failure to meet a legitimate requirement is a failure of
quality.

220Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Evolving requirements: people realize what they want as the product

develops. Adhering to a start-of-the-project requirements list may meet

the contract but yield a failed product.

Buggy: anything known to have lots of problems has more.

Recent failure: anything with a recent history of problems.

Upstream dependency: may cause problems in the rest of the system.

Downstream dependency: sensitive to problems in the rest of the

system.

221Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Distributed: anything spread out in time or space, that must work
as a unit.

Open-ended: any function or data that appears unlimited.

Complex: what’s hard to understand is hard to get right.

Language-typical errors: such as wild pointers in C.

Little system testing: untested software will fail.

Little unit testing: programmers normally find and fix most of their
own bugs.

222Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Previous reliance on narrow testing strategies: can yield a
many-version backlog of errors not exposed by those techniques.

Weak test tools: if tools don’t exist to help identify/isolate a class of
error (e.g. wild pointers), the error is more likely to survive to testing
and beyond.

Unfixable: bugs that survived because, when they were first
reported, no one knew how to fix them in the time available.

223Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Untestable: anything that requires slow, difficult or inefficient
testing is probably undertested.

Publicity: anywhere failure will lead to bad publicity.

Liability: anywhere that failure would justify a lawsuit.

Critical: anything whose failure could cause substantial damage.

Precise: anything that must meet its requirements exactly.

224Copyright © 2020 AltomLecture 2 - Risk-Based Testing

Project Risk Heuristics:
Where to Look for Errors

Easy to misuse: anything that requires special care or training to
use properly.

Popular: anything that will be used a lot, or by a lot of people.

Strategic: anything that has special importance to your business.

VIP: anything used by particularly important people.

Visible: anywhere failure will be obvious and upset users.

Invisible: anywhere failure will be hidden and remain undetected
until a serious failure results.

225Copyright © 2020 AltomLecture 2 - Risk-Based Testing

● Test design:

○ test cases & techniques

○ testing strategy: based on...

■ information objectives

■ context factors

● Risk-based testing

○ Quicktests

○ Exploratory guidewords and the

○ HTSM

○ Failure mode & effects analysis

○ Project-level risks

Review

226Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Copyright © 2020 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and Rebecca Fiedler, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Test Design
Lecture 3
Spec-Based Testing

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

227Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Course Overview: Fundamental Topics

 1. Function testing & tours
A taxonomy of test techniques

 2. Risk-based testing, failure mode analysis and quicktests
Testing strategy. Introducing the Heuristic Test Strategy Model

 3. Specification-based testing
Work on your assignment

 4. Use cases and scenarios
Comparatively evaluating techniques.

 5. Domain testing: traditional and risk-based
When you enter data, any part of the program that uses that data is a risk. Are you designing for that?

 6. Testing combinations of independent and interacting variables.
Combinatorial, scenario-based, risk-based and logical-implication analyses of multiple variables.

228Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Required reading

● Bach, J., “Heuristic test strategy model”, Version 5.7.5 (2019). https://www.satisfice.com/download/heuristic-test-strategy-model

Recommended reading

● Adler, M., & Van Doren, C. (1972). How to Read a Book. Touchstone

● Gause, D.C., & Weinberg, G.M. (1989). Exploring Requirements: Quality Before Design. Dorset House

● Moon, B.M., Hoffman, R.R., Novak, J.D., & Canas, A.J. (Eds., 2011). Applied Concept Mapping: Capturing, Analyzing, and

Organizing Knowledge. CRC Press

● McMillan, D., “Mind Mapping 101”. (2011). http://www.bettertesting.co.uk/content/?p=956

● McMillan, D., “Tales from the trenches: Lean test case design”. (2010). http://www.bettertesting.co.uk/content/?p=253

Today’s Readings

https://www.satisfice.com/download/heuristic-test-strategy-model
http://www.bettertesting.co.uk/content/?p=956
http://www.bettertesting.co.uk/content/?p=253

229Copyright © 2020 AltomLecture 3 - Spec-Based Testing

What Is Spec-Based Testing?

1. Activities focused on testing the product against claims made in
specifications.

This is what we mean by spec-based testing.

2. Testing focused on logical relationships among variables that are often

 detailed in specifications.

We study this as multivariable testing.

 3. Activities focused on proving that statements in a specification (and code that

 implements the statements) are logically correct.

This is taught in more theoretical courses.

230Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

231Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Include any document that:

● describes the product, and

● drives development, sale, support, use, or purchase of the

product, and

● either

○ was created by the maker or other vendor of the product

OR

○ would be accepted by the maker or other vendor of the

product as an accurate or controlling description.

What Is the Specification?

The complete set

of specifications

can include

documents

created by third

parties or after the

product is finished

or by third parties.

232Copyright © 2020 AltomLecture 3 - Spec-Based Testing

What is the scope of this specification?

● Some specs cover the entire product, others describe only part

of it (such as error handling).

● Some specs address the product from multiple points of view,

others only from one point of view.

What Is the Specification?

233Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Do you have the right specification?

● Do you have the current version?

● Is the spec kept under source control?

● How do you verify the version?

Is this a stable specification?

● Is the product under change control?

● Is the spec under change control?

○ Should it be?

What Is the Specification?

234Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Some aspects of the product are clearly understood, but not described in detail in the

formal specifications because:

● they are determined by controlling cultural or technical norms (and often

described in documents completely independent of this product), or

● they are defined among the staff, perhaps in some other document.

Finding documents that describe these implicit specifications is useful: Rather than

making an unsupported statement like ”this is inappropriate” or ”users won’t like it”,

you can use implicit specifications to justify your assertions.

Implicit Specifications

235Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Published style guide and UI standards

● Published standards (such as C-language or IEEE Floating

Point)

● 3rd party product compatibility test suites

● Localization guide (probably published for localizing products

on your platform)

● Published regulations

Examples of Implicit Specifications

236Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Marketing presentations (e.g. documents that sell the concept

of the product to management)

● Internal memos (e.g. project manager to engineers, describing

feature definitions)

● User manual draft (and previous version’s manual)

● Product literature (advertisements and other promotional

documents)

● Sales presentations

● Software change memos that come with each new internal

version of the program

Examples of Implicit Specifications

Look for in-house

documents that

describe the product to

influential

stakeholders.

(”In-house” means

created by the company

for its own use.)

237Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Bug reports (responses to them)

● Look at customer call records from the previous version. What bugs were found

in the field?

● Usability test results (and corporate responses to them)

● Beta test results (and corporate responses to them)

● 3rd party tech support databases, magazines and web sites with:

○ discussions of bugs in your product

○ common bugs in your niche or on your platform

○ discussions of how some features are supposed (by some) to work

Examples of Implicit Specifications

238Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Reverse engineer the program

● Look at header files, source code, database table definitions

● Prototypes, and lab notes on the prototypes

● Interview people, such as

○ development lead

○ tech writer

○ customer service

○ subject matter experts

○ project manager

○ development staff from the last version

Examples of Implicit Specifications

239Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Specs and bug lists for all 3rd party tools that you use

○ Example: If your company develops software for the

Windows platform, the Microsoft Developer Network has

lots of relevant info

● Get lists of compatible equipment and environments

○ Interface specifications

○ Protocol specifications

● Reference materials that can be used as oracles for the

content that comes with the program (e.g. use an atlas to

check your online geography program)

Examples of Implicit Specifications

240Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Look at competing products:

○ Similarities and differences between the benefits and

features offered by the products

○ How the other products describe their design,

capabilities and behaviors

○ What weaknesses they have, what bugs they have or

publicly fixed

● Make precise comparisons with products you emulate. If

product X is supposed to work ”just like” Y, compare X and Y

thoroughly.

Examples of Implicit Specifications

Anything that

drives people's

expectations of

the product is a

(explicit or

implicit)

specification.

241Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Questions like these

frame the context

analysis behind

specification-driven

testing. There is no one

best way to test

against a specification.

The details of your

testing are determined

by your context.

Critical Questions

242Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Add an enforceable description to a contract for custom software?

● Present a product vision? (Details illustrate the intent of the product but will

change in implementation.)

● Provide an authoritative description for development?

● Provide a description that marketers, sales or advertisers can rely on?

● Facilitate and record agreement among stakeholders? About specific issues or

about the whole thing?

● Provide support material for testers/tech support staff/technical writers?

● Comply with regulations?

Why Did They Create It?

243Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

244Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Who is the champion of this document?

● Who cares whether the program matches the spec, and why

do they care?

● Who cares if the spec is kept up to date and correct?

● Who doesn’t care if it is kept up to date?

● Who is accountable for its accuracy and maintenance?

● Who will have to deal with corporate consequences if it is

inaccurate?

● Who will invest in your developing an ability to understand the

specification?

Who Are the Stakeholders?

245Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

246Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Learn about the product?

● Support project manager’s use of the spec as a driver of the project?

● Prevent problems (via design review) before they are coded in?

● During test planning, identify testing issues before you get code?

● Source of test ideas while testing?

● Source of evidence that product behaviors are or are not bugs?

● Manage contract-related risks?

● Manage regulatory risks?

● Help company assess product drift?

What Are You Trying to Learn
or Achieve With the Spec?

247Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

248Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Nonconformity with the specification will sometimes carry legal implications:

● In custom software, a spec that is part of the contract creates a warranty. The

non-conforming product is defective and the buyer can refuse to pay or

demand a discount.

● In software sold to the public, specs create warranties (whether the vendor

intends them as warranties or not):

http://www.kaner.com/pdfs/liability_sigdoc.pdf

● A claim that a product is compatible with another creates warranties that the

product won’t fail compatibility tests:

http://www.kaner.com/pdfs/liability.pdf

Consequences of Nonconformity?

http://www.kaner.com/pdfs/liability_sigdoc.pdf
http://www.kaner.com/pdfs/liability.pdf

249Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

250Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Specifications can run thousands of pages

○ spread across multiple documents

○ which incorporate several other documents by reference

○ using undefined, inconsistently defined or

idiosyncratically defined vocabulary.

● Specification readers often suffer severe information overload.

What Claims Does the Spec Make?

Active reading

skills and

strategies are

essential for

effective

specification

analysis.

251Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Prioritize what you read, by

● Surveying (read table of contents, headings, abstracts)

● Skimming (read quickly, for overall sense of the material)

● Scanning (seek specific words or phrases)

Search for information in the material you read, by

● Asking information-gathering questions and search for their answers

● Creating categories for information and read to fill in the categories

● Questioning/challenging/probing what you’re reading

Gause, D.C., & Weinberg, G.M. (1989). Exploring Requirements: Quality Before Design is a superb source
for context-free questions.

Active Reading (Example)

252Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Active Reading (Example)

Organize it

● Read with a pen in your hand

● If you underline or highlight, don’t do so until AFTER you’ve read the section

● Make notes as you go

○ Key points, Action items, Questions, Themes, Organizing principles

● Use concise codes in your notes (especially on the book or article). Make up 4 or

5 of your own codes. These two are common, general-purpose:

○ ? means I have a question about this

○ ! means new or interesting idea

253Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Organize it

● Spot patterns and make connections

○ Create information maps

● Relate new knowledge to old knowledge

Explain it

● The core ideas, the patterns, the relationships...

● To yourself or to someone else

Plan for your retention of the material

● Cubing as a post-reading exercise

https://historytech.wordpress.com/2008/05/15/tip-of-the-week-cubing/

● SQ3R (survey/question/read/recite/review)

● Archival notes

Active Reading (Example)

https://historytech.wordpress.com/2008/05/15/tip-of-the-week-cubing/

254Copyright © 2020 AltomLecture 3 - Spec-Based Testing

See https://www.satisfice.com/download/heuristic-test-strategy-model

Using the Heuristic Test Strategy
Model for Active Reading

https://www.satisfice.com/download/heuristic-test-strategy-model

255Copyright © 2020 AltomLecture 3 - Spec-Based Testing

This model provides a structure for:

● Sorting/classifying a complex body of information

● Generating test ideas

○ about the classified information or about combinations

of the classified information

○ Guide words (HAZOPS)

■ We talked about this when we covered risk-based

testing

○ Generative taxonomy

Using HTSM for Active Reading

256Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Every statement in the specification describes some aspect(s) of the

project or product

● Product Elements: things you can test

● Project Environment: aspects of the project that facilitate or

constrain the testing effort

● Quality Criteria: what stakeholders value about the product.

Quality criteria are multidimensional, and often incompatible

with each other. A specific criterion might be essential for one

product and not very important for another.

Using Bach's HTSM for Active Reading

Create a map of

the HTSM, then

sort every

statement of

interest into the

structure created

by the map.

257Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● FreeMind: http://freemind.sourceforge.net/wiki/index.php/Main_Page

● MindMup: https://www.mindmup.com

● MindManager: https://www.mindmanager.com

● XMind: http://www.xmind.net

● For a very useful list of tools, see Wikipedia:

http://en.wikipedia.org/wiki/Concept_mapping_program

Concept Maps

http://freemind.sourceforge.net/wiki/index.php/Main_Page
https://www.mindmup.com/
https://www.mindmanager.com
http://www.xmind.net
http://en.wikipedia.org/wiki/Concept_mapping_program

258Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Create a Map of This Model

259Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Mission. Your purpose on this project, as understood by you and

your customers.

● Information: Information about the product or project that is

needed for testing

● Developer Relations: How you get along with the programmers

● Test Team: Anyone who will perform or support testing

● Equipment & Tools: Hardware, software, or documents required to

administer testing

● Schedule: The sequence, duration, and synchronization of project

events

● Test Items: The product to be tested

● Deliverables: The observable products of the test project

Project Environment Map

Test
Technique

Project
Environment

Product
Elements

Quality
Criteria

260Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Structure: Everything that comprises the physical

product

● Functions: Everything that the product does

● Data: Everything that the product processes

● Interfaces: Every conduit by which the product is

accessed or expressed

● Platform: Everything on which the product depends

(and that is outside your project)

● Operations: How the product will be used

● Time: Any relationship between the product and time

Product Elements Map

Test
Technique

Project
Environment

Product
Elements

Quality
Criteria

261Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Capability: Can it perform the required functions?

● Reliability: Will it work well and resist failure in all required situations?

● Usability: How easy is it for a real user to use the product?

● Charisma: How appealing is the product?

● Security: How well is the product protected against unauthorized use or

intrusion?

● Scalability: How well does the deployment of the product scale up or

down?

● Compatibility: How well does it work with external components &

configurations?

● Performance: How speedy and responsive is it?

● Installability: How easily can it be installed onto its target platforms?

Quality Criteria Map: Operational Criteria

Test
Technique

Project
Environment

Product
Elements

Quality
Criteria

262Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Supportability: How economical will it be to provide

support to users of the product?

● Testability: How effectively can the product be

tested?

● Maintainability: How economical is it to build, fix or

enhance the product?

● Portability: How economical will it be to port or

reuse the technology elsewhere?

● Localizability: How economical will it be to adapt the

product for other places?

Quality Criteria Map: Development Criteria

Test
Technique

Project
Environment

Product
Elements

Quality
Criteria

263Copyright © 2020 AltomLecture 3 - Spec-Based Testing

See https://www.satisfice.com/download/heuristic-test-strategy-model

The Full Model Has Depth

https://www.satisfice.com/download/heuristic-test-strategy-model

264Copyright © 2020 AltomLecture 3 - Spec-Based Testing

You Can Customize the Model

265Copyright © 2020 AltomLecture 3 - Spec-Based Testing

So Add a Level to the Map

266Copyright © 2020 AltomLecture 3 - Spec-Based Testing

You Can Customize the Model:

267Copyright © 2020 AltomLecture 3 - Spec-Based Testing

I added Benefits to

Product Elements,

because this helps me

think about scenarios.

I also added Michael

Bolton’s treatment of

time and timing.

You Can Customize the Model:

268Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Most people who

work seriously

with this model

customize it to

meet their needs.

You Can Customize the Model:

Emilsson, Jansson & Edgren present their customization in “Software Quality Characteristics 1.0” at
http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

Quality criteria are particularly prone to variation across contexts:

● The more some criterion matters to you, the more finely you will analyze it.

http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

269Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Each statement of interest goes onto the map

● Add notes to include:

○ Test ideas

○ Special data values

○ Interactions with other variables

○ Why this item is important

Using HTSM for Active Reading

We’ll work

through an

example of this in

the assignment.

270Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

271Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Many sources of ambiguity in software design & development. A few examples:

● Wording or interpretation of specs or standards

● ”Technical terms” have specific meanings to some readers but incompatible

dictionary-meanings to most

● Expected responses of the program to invalid or unusual inputs

● Behavior of undocumented features

● Conduct and standards of regulators/auditors

● Customers’ interpretation of their needs and the needs of the users they

represent

● Definitions of compatibility among 3rd party products

Whenever there is ambiguity, there is opportunity for a defect.

Ambiguity Analysis

Many testers find Richard Bender's notes particularly helpful. http://benderrbt.com/Ambiguityprocess.pdf

http://benderrbt.com/Ambiguityprocess.pdf

272Copyright © 2020 AltomLecture 3 - Spec-Based Testing

 1. What is the specification?

 2. Why did they create it?

 3. Who are the stakeholders?

 4. What are you trying to learn or achieve with the spec?

 5. What are the consequences of nonconformity?

 6. What claims does the specification make?

 7. What ambiguities must be resolved?

 8. How should you use it to create tests?

Critical Questions

273Copyright © 2020 AltomLecture 3 - Spec-Based Testing

For every statement of fact in the specification:

● Create at least one test that tries to prove the statement false

● Create tests that vary the parameters of the statement (e.g.

test boundary conditions)

● Create tests of the reasonable implications of the statement

● Create tests of this statement in conjunction with related

statements

● Create tests of scenarios that apply the statement in the

process of achieving a program benefit.

Driving Tests From the Spec

The level of depth you

will choose should

depend on the kinds

of information you're

looking for and the

risks you're trying to

manage.

274Copyright © 2020 AltomLecture 3 - Spec-Based Testing

Traceability Matrix

A traceability

matrix maps tests

to test items.

For each test

item, you can

trace back to the

tests that test it.

Item 1 Item 2 Item 3 Item 4 Item 5

Test 1 X X X

Test 2 X X

Test 3 X X X

Test 4 X X

Test 5 X X

Totals 2 2 3 4 1

275Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Useful for tracking specification coverage

● Each test item in its own column

○ A test item is anything that must be tested: might be a function, a

variable, an assertion in a specification, a device that must be tested.

● One row per test case

● A cell shows that this test tests that test item

● If a feature changes, you can quickly see which tests must be reanalyzed,

probably rewritten.

● In general, you can trace back from a given item of interest to the tests that

cover it.

● This doesn’t specify the tests, it merely maps their coverage.

Traceability Matrix

276Copyright © 2020 AltomLecture 3 - Spec-Based Testing

● Specification-based testing

○ Discovering what the specification is and what it says is

probably the hardest task

■ Implicit, explicit specifications

■ HTSM as an active reading tool

○ Important to analyze the content and context of the

specification

○ Spec-driven testing can be done at many levels of

thoroughness. Simple checking is common, but it won't

tell you much.

Review

277Copyright © 2020 AltomLecture 4 - Scenario Testing

Copyright © 2020 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and Rebecca Fiedler, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Test Design
Lecture 4
Scenario Testing

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

278Copyright © 2020 AltomLecture 4 - Scenario Testing

Course Overview: Fundamental Topics

 1. Function testing & tours
A taxonomy of test techniques

 2. Risk-based testing, failure mode analysis and quicktests
Testing strategy. Introducing the Heuristic Test Strategy Model

 3. Specification-based testing
Work on your assignment

 4. Use cases and scenarios
Comparatively evaluating techniques.

 5. Domain testing: traditional and risk-based
When you enter data, any part of the program that uses that data is a risk. Are you designing for that?

 6. Testing combinations of independent and interacting variables.
Combinatorial, scenario-based, risk-based and logical-implication analyses of multiple variables.

279Copyright © 2020 AltomLecture 4 - Scenario Testing

Required reading

● Bolton, Michael (2007), “Why We do Scenario Testing”, www.developsense.com/blog/2010/05/why-we-do-scenario-testing/

● Carroll, John M. (1999). “Five reasons for scenario-based design”. Proceedings of the 32nd Hawaii International

Conference on System Sciences,

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.7467&rep=rep1&type=pdf

● Kaner, Cem (2003). “An Introduction to Scenario Testing”, http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

● Kaner, C. (2003). “What Is a Good Test Case?”, http://www.kaner.com/pdfs/GoodTest.pdf

Recommended reading

● Buwalda, Hans (2004) “Soap Opera Testing,“ presented at International Software Quality Week Europe conference,

Brussels. https://www.logigear.com/logi_media_dir/Documents/whitepapers/soap_opera_testing.pdf

● Charles, Fiona A. (2009). “Modeling Scenarios Using Data”, STP Magazine.
http://quality-intelligence.com/articles/Modelling%20Scenarios%20Using%20Data_Paper_Fiona%20Charles_CAST%202009_Final.pdf

● Collard, R. (1999, July) “Developing Test Cases from Use Cases“, available at
https://www.stickyminds.com/better-software-magazine/test-design-developing-test-cases-use-cases

● Hackos, J.T. & Redish, J.C. (1998). User and Task Analysis for Interface Design. Wiley

Today’s Readings

http://www.developsense.com/blog/2010/05/why-we-do-scenario-testing/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.7467&rep=rep1&type=pdf
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf
http://www.kaner.com/pdfs/GoodTest.pdf
https://www.logigear.com/logi_media_dir/Documents/whitepapers/soap_opera_testing.pdf
http://www.quality-intelligence.com/articles/Modelling%20Scenarios%20Using%20Data_Paper_Fiona%20Charles_CAST%202009_Final.pdf
https://www.stickyminds.com/better-software-magazine/test-design-developing-test-cases-use-cases

280Copyright © 2020 AltomLecture 4 - Scenario Testing

“Use case“ is a popular and influential design idea in software

engineering.

“A use cases specifies a sequence of actions, including variants, that

the system can perform and that yields an observable result of value

to a particular actor.“ (p. 41)

See Jacobson, I., Booch, G. & Rumbaugh, J. (1999). The Unified Software Development Process

Scenarios for Beginners

281Copyright © 2020 AltomLecture 4 - Scenario Testing

Concepts within the use case:

● Actor: a person, process or external system that interacts with

your product.

● Action: “An action results in a change of state and is realized

by sending a message to an object or modifying a value in an

attribute.“ (Kruchten, P., (2003). The Rational Unified Process: An

Introduction. 3d edition. p. 426). (Something the actor does as

part of the effort to achieve the goal.)

● Goal. The goal is to reach a desired state of the system (the

observable result of value).

Scenarios for Beginners

282Copyright © 2020 AltomLecture 4 - Scenario Testing

Concepts within the use case:

● Sequences of actions: “A specific flow of events through the

system. Many different flows are possible and many of them

may be very similar. To make a use-case model understandable,

we group similar flows of events into a single use case.“

Kruchten, P. (2003, 3rd Ed.). The Rational Unified Process: An

Introduction

● Sequence diagram: A diagram that shows actions and states of

a use case, emphasizing the ordering of the actions in time.

Scenarios for Beginners

283Copyright © 2020 AltomLecture 4 - Scenario Testing

● Brainstorm and list the primary actors.

● Brainstorm and exhaustively list user goals for the system.

● Capture the summary goals (higher-level goals, which include several sub-goals.

These capture the meaningful benefits offered by the system).

● Select one use case to expand.

● Capture stakeholders and interests, preconditions and guarantees.

● Write the main success scenario.

● Brainstorm and exhaustively list extension conditions (such as alternate

sequences to achieve the same result, or sequences that lead to failure).

Taken/summarized from Cockburn, A.(2001). Writing Effective Use Cases

Scenarios for Beginners

284Copyright © 2020 AltomLecture 4 - Scenario Testing

The Rational Unified Process defines scenarios in terms of use cases.

Under their definition:

● A scenario is an instantiation of a use case (specify the values of the use case’s

data to create one instance of the use case).

● A RUP-scenario traces one of the paths through the use case. If you actually

execute the path, you are running a scenario test. See Collard, R. (July/August

1999). “Test design: Developing test cases from use cases”. (pp. 31-36).

https://www.stickyminds.com/better-software-magazine/test-design-developing-test-

cases-use-cases

● Thorough use-case-based testing involves tracing through all (most) of the paths

through all (most) of the use cases, paying special attention to failure cases.

Scenarios for Beginners

https://www.stickyminds.com/better-software-magazine/test-design-developing-test-cases-use-cases
https://www.stickyminds.com/better-software-magazine/test-design-developing-test-cases-use-cases

285Copyright © 2020 AltomLecture 4 - Scenario Testing

Encourages the tester to:

● Identify the actors in the system

○ Human,

○ Other processes or systems.

● Inventory the possible actor goals.

● Identify the benefits of the system (via identifying the summary goals).

● Develop some method (sequence diagrams, outlines, textual descriptions,

whatever) for describing a sequence of actions and system responses that

ultimately lead to a result.

● Develop variations of a basic sequence, to create meaningful new tests.

Benefits of Use-Case Based Testing

Incompetent use-case

modelers consider

only the happy paths

(“main success

scenarios“) or

simplistic deviations

from them. This is

common, but foolish.

286Copyright © 2020 AltomLecture 4 - Scenario Testing

● A use-case based approach to testing provides a good starting point if you don’t

know much about the application.

○ Provides a structure for tracing through the application

○ As simple as function testing but works several functions together

● The Rational Unified Process, and the concept generally of use cases, have been

widely adopted in the academic community and (especially use cases) in the

agile development community.

○ Atif Memon has published an interesting line of research on automated

development of scenario paths.

Evaluating This Approach

This basic approach to

scenario testing is

easier for students

because a course gives

students little time to

develop a deep

appreciation of the

software under test.

287Copyright © 2020 AltomLecture 4 - Scenario Testing

This approach abstracts out the human element:

● Because the actor may not be human, actors are described in ways that are

equally suitable for things that have no consciousness.

● Human goals go beyond a desired program state. They are more complex.

● In humans, goals are intimately connected with motivation—Why does this

person want to achieve this goal? How important is it to them? Why?

● In humans, failure to achieve a goal causes consequences, including emotions.

How upset will the user be if this fails? Why?

Evaluating This Approach

288Copyright © 2020 AltomLecture 4 - Scenario Testing

● There can be scenarios with no people in them, but when there are people,

scenario writers are interested in them.

● Even if all the obvious actors are human, there is a person who has started the

scenario in motion. The scenario analyst will be on the lookout for this

human-in- the-background and will be interested in the motivation and

reactions of that person.

● More generally, what I know as “scenarios“ involves a much richer view of the

system and the people who use it, including details that use-case authors would

normally exclude (see Cockburn's recommendations on what to include and

what to abstract out).

Evaluating This Approach

Even though use-case

based testing is useful

in its own right, as a

basic approach to

scenario testing, it

misses the deep value

of what we know as

scenario analysis.

289Copyright © 2020 AltomLecture 4 - Scenario Testing

Early scenarios: Imagine a hypothetical future event or crisis

● What effects or side-effects is it likely to have?

● How will existing systems or policies deal with it?

See:

● Alexander, I., & Maiden, N. (2004). Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle. Wiley.

● Kahn, H. (1967). “The use of scenarios”. In Kahn, Herman & Wiener, Anthony (1967). “The Year 2000: A Framework for

Speculation on the Next Thirty-Three Years”, pp. 262-264. www.hudson.org/research/2214-the-use-of-scenarios

● Wack, P. (1985b). “Scenarios: Shooting the rapids”. Harvard Business Review 63(6), 139-150.

http://www.scribd.com/doc/4489875/Wack-Shooting-the-rapids

● Walker, W.E. (1994). The use of scenarios and gaming in crisis management planning and training. Presented at the

conference, The Use of Scenarios for Crisis Management, Netherlands Ministry of Home Affairs, at the Netherlands

Institute for Fire Service & Disaster Mgmt, Arnhem, November (pp. 16-18).

● Wikipedia: “Scenario planning“ https://en.wikipedia.org/wiki/Scenario_planning

The Scenario Concept

https://www.hudson.org/research/2214-the-use-of-scenarios
http://www.scribd.com/doc/4489875/Wack-Shooting-the-rapids
https://en.wikipedia.org/wiki/Scenario_planning

290Copyright © 2020 AltomLecture 4 - Scenario Testing

● Call attention to the larger range of possibilities that must be considered in the analysis of the future.

● Dramatize and illustrate the possibilities.

● Force analysts to deal with details and dynamics that they might avoid if they focus on abstract considerations.

● Illuminate interactions of psychological, social, economic, cultural, political, and military factors, including the influence of

individual personalities ... in a form that permits the comprehension of many interacting elements at once.

● Consider alternative possible outcomes of certain real past and present events.

Kahn's List of Benefits of
Scenario-Based Thinking

Abstracted from Kahn, H. (1967). “The use of scenarios”. In Kahn, Herman & Wiener, Anthony (1967).
“The Year 2000: A Framework for Speculation on the Next Thirty-Three Years”, pp. 262-264
www.hudson.org/research/2214-the-use-of-scenarios

https://www.hudson.org/research/2214-the-use-of-scenarios

291Copyright © 2020 AltomLecture 4 - Scenario Testing

Here are a couple of other papers that you might find interesting. These illustrate

scenario-based planning in other fields.

● Alexander D. reports on using scenarios to teach principles of emergency

planning and management. See: “Scenario methodology for teaching principles

of emergency management. Disaster Prevention & Management”, (2000), Vol.

9(2), (pp. 89-97)

● Rippel & Teply report on using scenarios to test banks' ability to withstand

stressors (what they call “risk events“). See: “Operational Risk -- Scenario

Analysis”. Working Papers IES 2008/15, Charles University Prague, Faculty of

Social Sciences, Institute of Economic Studies, revised Sep 2008.

http://ideas.repec.org/p/fau/wpaper/wp2008_15.html

Exemplars From Other Fields

http://ideas.repec.org/p/fau/wpaper/wp2008_15.html

292Copyright © 2020 AltomLecture 4 - Scenario Testing

Scenario 1:

A real user wants the program to place

the logo in exactly the place that the logo

should be.

The Postage Stamp Bug

http://www.girlscouts.org/who_we_are/

http://www.girlscouts.org/who_we_are/

293Copyright © 2020 AltomLecture 4 - Scenario Testing

Scenario 2:

● Create designs that copy PageMaker templates.

● Surprise!

○ Some of the designs need a graphic pasted at the postage

stamp bug location.

The Postage Stamp Bug

294Copyright © 2020 AltomLecture 4 - Scenario Testing

A scenario test uses a scenario as a tool for evaluating a program’s behavior.

The elements of the story (adapted from Carroll, J.M. (1999). “Five reasons for

scenario-based design”.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.7467&rep=rep1&type=pdf)

● Setting

● Agents or actors

● Goals or objectives

● Motivations and emotions

● Plot (sequences of actions and events)

● Actions & events can change the goals

The Software Scenario

A scenario is a coherent story about how someone uses
(or tries to use) the program.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.7467&rep=rep1&type=pdf

295Copyright © 2020 AltomLecture 4 - Scenario Testing

Ideal scenario test has several characteristics:

● The test is based on a coherent story about how the program is used,

including goals and emotions of people.

● The story is credible. Stakeholders will believe that something like it probably

will happen.

● The story is motivating. A stakeholder with influence will advocate for fixing a

program that failed this test.

● The story involves complexity: a complex use of the program or a complex

environment or a complex set of data.

● Test results are easy to evaluate. This is important for scenarios because they

are complex.

Attributes of Scenario Tests

296Copyright © 2020 AltomLecture 4 - Scenario Testing

Many test techniques tell you how the program will behave in the

first few days that someone uses it.

● Good scenario tests go beyond the simple uses of the program

to ask whether the program is delivering the benefits it should

deliver.

● Good scenarios often give you insight into frustrations that an

experienced user will face—someone who has used the

program for a few months and is now trying to do significant

work with the program.

What Testers Learn From Scenarios

297Copyright © 2020 AltomLecture 4 - Scenario Testing

● Mechanical (or procedural). The tester uses a

routine procedure to determine a good set of

tests.

● Risk-based. The tester combines test values (the

values of each variable) based on perceived risks

associated with noteworthy combinations.

● Scenario-based. The tester combines test values

on the basis of interesting stories created for the

combinations.

Approaches to Combination Testing

Scenario-based thinking

provides a strategy for

selecting meaningful

combinations, such as

combinations important to

the experienced user.

298Copyright © 2020 AltomLecture 4 - Scenario Testing

1. Create follow-up tests for bugs that look

controversial or deferrable.

17 Lines of Inquiry for Suites of Scenarios

The postage stamp bug is an example

of this kind of scenario.

This is NOT the most important kind

of scenario.

The next 16 start from ideas about

the user, the program, the task, or

the market. They are the basis for

SUITES of scenarios rather than one

scenario focused on one bug.

299Copyright © 2020 AltomLecture 4 - Scenario Testing

Imagine the GetAJob product.

It helps the user:

● Create resumes

● Print business cards

● Mine job openings from the web

● Enter data into standard job application forms on the web

● Track contacts with employers

● Track contacts with recruiters

● Track job-seeking expenses

● etc.

Consider a Hypothetical Example

300Copyright © 2020 AltomLecture 4 - Scenario Testing

2. List possible users. Analyze their interests and objectives.

● Interests: broader motivators of the person.

● Objectives: Specific tasks the user wants to achieve with the

program.

● Examples:

○ The traditionalist

○ The young networker

○ The socialite salesperson

○ The support group

17 Lines of Inquiry for Suites of Scenarios

301Copyright © 2020 AltomLecture 4 - Scenario Testing

3. Work alongside users to see how they work and what

they do.

● What are they doing? Why?

● What confuses them?

● What irritates them?

All of those become tests...

17 Lines of Inquiry for Suites of Scenarios

302Copyright © 2020 AltomLecture 4 - Scenario Testing

4. Interview users about famous challenges and failures of the

old system.

17 Lines of Inquiry for Suites of Scenarios

303Copyright © 2020 AltomLecture 4 - Scenario Testing

`

5. Look at the specific transactions that people try to complete,

such as opening a bank account or sending a message.

You can design scenarios (one, or probably more) for each

transaction, plus scenarios for larger tasks that are composed of

several transactions.

17 Lines of Inquiry for Suites of Scenarios

Transaction processing systems: http://en.wikipedia.org/wiki/Transaction_processing

http://en.wikipedia.org/wiki/Transaction_processing

304Copyright © 2020 AltomLecture 4 - Scenario Testing

6. Work with sequences

● People (or the system) typically do tasks (like Task

X) in an order. What are the most common orders

(sequences) of subtasks in achieving X?

● It might be useful to map Task X with a behavior

diagram.

17 Lines of Inquiry for Suites of Scenarios

This is the closest analog to

the use-case based scenario.

But feel free to consider

motivation and consequence,

not just the goal and the

alternate sequences.

305Copyright © 2020 AltomLecture 4 - Scenario Testing

7. Consider disfavored users.

How do they want to abuse your system? Analyze their interests,

objectives, capabilities, and potential opportunities.

17 Lines of Inquiry for Suites of Scenarios

Gause & Weinberg discuss disfavored users in Exploring Requirements.

306Copyright © 2020 AltomLecture 4 - Scenario Testing

8. What forms do the users work with? Work with them (read,

write, modify, etc.)

● GetAJob probably:

○ Offers several standard resume templates

○ Automatically fills in fields in employer-site or

recruiter-site forms

17 Lines of Inquiry for Suites of Scenarios

307Copyright © 2020 AltomLecture 4 - Scenario Testing

9. Write life histories for objects in the system.

● How was the object created, what happens to it,

how is it used or modified, what does it interact

with, when is it destroyed or discarded?

● GetAJob, for example, includes:

○ Resumes

○ Contacts

○ Downloaded ads

○ Links to network sites

○ Emails

17 Lines of Inquiry for Suites of Scenarios

Just as you can create a list of

possible users and base your

scenarios on who they are and what

they do with the system, you can

create a list of objects and base your

scenarios on what they are, why

they’re used, and what the system

can do with them.

308Copyright © 2020 AltomLecture 4 - Scenario Testing

10. List system events. How does the system handle them?

● An event is any occurrence that the system is designed to

respond to.

○ Business events, such as going to an interview,

sending a resume, getting called by a prospective

employer. (Robertson & Robertson are helpful for

identifying these)

○ Anything that causes an interrupt is an event the

system has to respond to.

17 Lines of Inquiry for Suites of Scenarios

309Copyright © 2020 AltomLecture 4 - Scenario Testing

11. List special events.

The system might change how it works or do special processing in

the context of this event.

● Predictable but unusual occurrences

● Examples:

○ Last (first) day of the quarter or of the fiscal or calendar

year

○ While you installing or upgrading the software

○ Holidays

17 Lines of Inquiry for Suites of Scenarios

310Copyright © 2020 AltomLecture 4 - Scenario Testing

12. List benefits and create end-to-end tasks to check them.

● What benefits is the system supposed to provide?

● For example, if the current project is an upgrade, what benefits

will the upgrade bring?

● Don’t rely only on an official list of benefits. Ask stakeholders

what they think the benefits of the system are supposed to be.

● Look for misunderstandings and conflicts among the

stakeholders.

17 Lines of Inquiry for Suites of Scenarios

311Copyright © 2020 AltomLecture 4 - Scenario Testing

13. Work with competing systems, or read books/articles about

what systems like this are supposed to do

● What programs compete with the GetAJob system? How do

they work? If you knew them well, what would you expect of

GetAJob?

● What programs offer some of the capabilities of GetAJob? For

example, if you knew contact management programs well,

what expectations would you have of GetAJob's contact

management features?

17 Lines of Inquiry for Suites of Scenarios

312Copyright © 2020 AltomLecture 4 - Scenario Testing

14. Study complaints about this system's predecessor or

competitors.

● Software vendors usually create a database of customer

complaints.

● Companies that write software for their own use often have an

in-house help desk that keeps records of user problems.

● Look for complaints about your product or similar ones online.

● Read the complaints. Take “user errors“ seriously—they reflect

ways that the users expected the system to work, or things

they expected the system to do.

17 Lines of Inquiry for Suites of Scenarios

313Copyright © 2020 AltomLecture 4 - Scenario Testing

15. Create a mock business. Treat it as real and process its data.

● Choose the characteristics of the business well. Simulate a

business that fits the profile of your intended users.

● Create events that are realistic for that business, and see how

your system copes with them.

● When you run into problems or limitations, consider (and

describe) how they impact your simulated business.

17 Lines of Inquiry for Suites of Scenarios

314Copyright © 2020 AltomLecture 4 - Scenario Testing

16. Try converting real-life data from a competing or

predecessor application.

● Test GetAJob 3.0 by feeding it user files from previous versions

○ Does it remember all the contacts?

○ Does it look up the right receipts and do the right

calculations for job-hunting tax deductions?

○ How can you tell?

17 Lines of Inquiry for Suites of Scenarios

This is a historically

common way to test a

program, but many

people use it without a

clear oracle.

How will you recognize

an error, such as one

that is formatted

correctly but the

number is wrong?

315Copyright © 2020 AltomLecture 4 - Scenario Testing

17. Look at the output that competing applications can create.

● How would you create these reports/displays/export files/

whatever in your application?

17 Lines of Inquiry for Suites of Scenarios

316Copyright © 2020 AltomLecture 4 - Scenario Testing

● Wiser to design a collection of scenarios by following one line

of inquiry at a time than by combining them

● For example, list of types of objects in the system (so that you

can develop a set of possible life histories for each)

● Given an item in the list, ask scenario- building questions

● Do this for several scenarios

○ Can build several scenarios for each item (type of object)

in the list

To Create a Suite of Scenarios:

317Copyright © 2020 AltomLecture 4 - Scenario Testing

Given an item in the list, ask the scenario questions:

● How to create a story that people will listen to?

○ Setting

○ Agents or actors

○ Goals or objectives

○ Plot (sequences of actions and events)

○ Actions and events can change goals

○ Emotions

● Note: the expected result of the story is the result you

expect if the program is working correctly.

To Create a Suite of Scenarios:

● Coherent story

● Credible

● Motivating

● Complex

● Easy to evaluate

318Copyright © 2020 AltomLecture 4 - Scenario Testing

Ask the scenario questions:

● What would make a story about this be credible?

○ When would this come up, or be used?

○ Who would use it?

○ What would they be trying to achieve?

○ Competitor examples?

○ Spec/support/history examples?

To Create a Suite of Scenarios:

● Coherent story

● Credible

● Motivating

● Complex

● Easy to evaluate

319Copyright © 2020 AltomLecture 4 - Scenario Testing

Given an item in the list, ask scenario-building questions:

● What is important (motivating) about this?

○ Why do people care about it?

○ Who would care about it?

○ What does it relate to that modifies its importance?

○ What gets impacted if it fails?

○ What does failure look like?

○ What are the consequences of failure?

■ Does it ever take on urgency?

To Create a Suite of Scenarios:

● Coherent story

● Credible

● Motivating

● Complex

● Easy to evaluate

320Copyright © 2020 AltomLecture 4 - Scenario Testing

● Scenarios are powerful tools for building a case that a bug

should be fixed.

○ Makes the problem report meaningful to a powerful

stakeholder who should care about this particular failure.

● Inability to develop a strong scenario around a failure may be a

signal that the failure is not well understood or not important.

Motivating Scenarios

321Copyright © 2020 AltomLecture 4 - Scenario Testing

Given an item in the list, ask the scenario questions:

● How to increase complexity?

○ What does this naturally combine with?

○ What benefits involve this and what collection of things

would be required to achieve each?

○ Can you make it bigger? Do it more? Work with richer

data? (What boundaries are involved?)

○ Will any effects of the scenario persist, affecting later

behavior of the program?

To Create a Suite of Scenarios:

● Coherent story

● Credible

● Motivating

● Complex

● Easy to evaluate

322Copyright © 2020 AltomLecture 4 - Scenario Testing

● Test each feature in isolation (or in small mechanical clusters of features) before

testing it inside scenarios.

○ Reach straightforward failures sooner and more cheaply.

○ If you keep and reuse tests, it is better to expose weak designs with

cheap function tests than more expensive scenarios.

○ Combination failures are harder to troubleshoot. Simple failures that

appear first inside a combination can be unnecessarily expensive to

troubleshoot.

○ Scenarios are prone to blocking bugs: a broken feature blocks running

the rest of the test. Once that feature is fixed, the next broken feature

blocks the test.

● Adding complexity arbitrarily won't work. The story must still be coherent and

credible.

Scenario Complexity

323Copyright © 2020 AltomLecture 4 - Scenario Testing

Scenario testing provides one approach to designing tests that combine several

variables or sequences of operations.

● Mechanical

○ Combinations that you can generate by following a routine procedure

● Risk-based

○ Combinations that are perceived as more likely to yield failure or yield

consequences that are more serious if failure occurs

● Scenario-based

○ Combinations that can provide insight into the value of the product

We'll return to

combination tests

in Lecture 6.

Scenario Complexity

324Copyright © 2020 AltomLecture 4 - Scenario Testing

Given an item in the list, ask the scenario questions:

● How to design an easy-to-evaluate test?

○ Self-verifying data sets?

○ Automatable partial oracles?

○ Known, predicted result?

● Evaluability is important because so many failures have

been exposed by a good scenario but missed by the tester.

To Create a Suite of Scenarios:

● Coherent story

● Credible

● Motivating

● Complex

● Easy to evaluate

325Copyright © 2020 AltomLecture 4 - Scenario Testing

● Sketch the story, briefly. You don't have to write down the details of the setting

and motivation if you understand them. (Add these details to your bug reports,

as needed.)

○ Some skilled scenario testers add detail early. See Buwalda, H. (2004).

“Soap Opera Testing”. International Software Quality Week Europe

conference, Brussels.

http://www.logigear.com/resource-center/software-testing-articles-by-logigear-st

aff/246-soap-opera-testing.html

● Only write down the steps that are essential (essential = you will forget or your

are likely to make a mistake).

● Your expected result is ALWAYS correct program behavior.

Practical Tips for Describing the Scenario

http://www.logigear.com/resource-center/software-testing-articles-by-logigear-staff/246-soap-opera-testing.html
http://www.logigear.com/resource-center/software-testing-articles-by-logigear-staff/246-soap-opera-testing.html

326Copyright © 2020 AltomLecture 4 - Scenario Testing

● The requirements analyst tries to foster agreement about the system to be

built. The tester exploits disagreements to predict problems with the system.

● The tester doesn’t have to decide or recommend how the product should work.

Her task is to expose credible concerns to the stakeholders.

● The tester doesn’t have to make design tradeoffs. Her task is to expose the

consequences of those tradeoffs, especially consequences that are

unanticipated or more serious than expected.

● The tester doesn’t have to respect prior agreements. (Caution: testers who

belabor the wrong issues lose credibility.)

● The scenario tester’s work need not be exhaustive, just useful.

Scenarios & Requirements Analysis

Designing scenario

tests is much like doing

a requirements

analysis, but it is not

requirements analysis.

They rely on similar

information but use it

differently.

327Copyright © 2020 AltomLecture 4 - Scenario Testing

● In general, you cannot guarantee high code coverage from

scenario testing.

● Each line of inquiry is like a tour.

○ You could explore that line thoroughly to achieve a level

of coverage. Examples—cover many:

■ system events

■ objects created by the system

■ required benefits

■ features

○ However, coverage-oriented testing often uses simpler

tests.

Coverage

328Copyright © 2020 AltomLecture 4 - Scenario Testing

● Documenting and reusing scenarios seems efficient because it

takes work to create a good scenario.

● Scenarios often expose design errors but you soon learn what

a test teaches about the design.

● Scenarios expose coding errors because they combine many

features and much data. However, to cover more

combinations, you need new tests, not repetition of old ones.

● It might be more effective to do regression testing using

single-feature tests or unit tests, not scenarios.

Reusing Scenarios

Regression testing

based on scenario

tests might be less

powerful and less

efficient than

regression based

on other

techniques.

329Copyright © 2020 AltomLecture 4 - Scenario Testing

● We’ve now looked at

○ Function testing

○ Risk-based testing

○ Scenario testing

○ Specification-based testing

● And we’ve noted the existence of about another 70 techniques.

● What sets techniques apart from each other?

● What makes a test a good or bad instance of a specific

technique?

Generalizing...

330Copyright © 2020 AltomLecture 4 - Scenario Testing

Two Examples of Test Techniques

Scenario testing Risk-based testing

● Tests are complex stories that capture how the
program will be used in real-life situations.

● These are combination tests, whose
combinations are credible reflections of real
use.

● These tests are highly credible (stakeholders
will believe users will do these things) and so
failures are likely to be fixed.

● Tests are derived from ideas about how the
program could fail.

● These tests might focus on individual variables
or combinations.

● These tests are designed for power and
efficiency - find the bug quickly - rather than
for credibility. Extreme-value tests that go
beyond reasonable use are common.

331Copyright © 2020 AltomLecture 4 - Scenario Testing

Techniques Differ in Core Attributes
of “Good“ Tests

Most tests have these

attributes to some

degree. To evaluate a

test, imagine possible

tests that would have

more of the attribute or

less of it. Compared to

those, where does this

one stand?

● Power

● Valid

● Value

● Credible

● Representative

● Non-redundant

● Motivating

● Performable

● Reusable

● Maintainable

● Information value

● Coverage

● Easy to evaluate

● Supports troubleshooting

● Appropriately complex

● Accountable

● Affordable

● Opportunity Cost

332Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is powerful if it is designed to be likely to expose a type of

error.

● A test can be powerful even if it doesn’t find a bug. The

question is: if the program has a bug of this type, will this test

expose it?

● A test can be powerful with respect to some types of bugs but

weak with respect to others.

● A more powerful test is more likely to expose a type of bug

than a test that is less powerful for bugs of that kind.

Power

333Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is valid if you can be sure that the problems it reveals are

genuine problems.

● As an example of invalidity, imagine a failure that occurs only

on a system that has insufficient memory (below the

minimum-published requirements).

○ Some companies will treat this as a problem if the

program doesn’t fail gracefully.

○ Others will reject the failure, and the test, as

unreasonable.

Validity

334Copyright © 2020 AltomLecture 4 - Scenario Testing

A test has value if it reveals things that your clients want to know

about the product or project.

● Low-value example: some companies treat corner cases as low

value. They consider the extreme values so extreme that they

don’t care what happens if someone actually pushes the

program to those limits.

● High-value example: Toys“R“Us lost a lot of money because

their website couldn’t handle high pre-Xmas volume. This was

an extreme value that they would have wanted to know about,

and that they probably spend a lot of money now to study.

Value

335Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is credible if the stakeholders will believe that people will

actually do the things that were done in this test, or that events like

the ones studied in this test are likely to happen.

● When someone says “no one would do that“, they are

challenging the credibility of the test.

● When someone says, “I don’t care what would happen if

someone did this“, they are challenging the value of the test.

Credible

336Copyright © 2020 AltomLecture 4 - Scenario Testing

Call a test representative if it is focused on actions or events most

likely to be tried or encountered by real users.

● A test can be credible but unrepresentative.

○ A test that emulates a situation that arises 0.05% of the

time is credible but not very representative.

○ A test that emulates a situation that arises every day is

representative.

Representative

337Copyright © 2020 AltomLecture 4 - Scenario Testing

Two tests can be similar in fundamental ways. For example, they

might be focused on the same risk. They might rely on the same

data or on values that are only trivially different.

A test technique is focused on non-redundancy if it selects one test

from a group of similar ones and treats that test as a representative

of the larger group.

Domain testing is an example of a technique that is focused on

non-redundancy.

Non-Redundant

338Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is motivating if the stakeholders will want to fix problems

exposed by this test.

● Motivating: A problem might be serious enough or potentially

embarrassing enough that the company will want to fix it even

if it is not credible (unlikely to ever arise in practice).

● Not motivating: A problem might be credible and valuable (the

company is glad to know about it), but the company doesn’t

think it is important enough to fix. (Perhaps it documents the

bug instead to facilitate later tech support.)

Motivating

339Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is performable if the tester can do the test as designed.

● A manual test that requires the tester to type lots of data

without making mistakes is not very performable. Nor is a test

that requires the tester to do something at an exact time.

● You can often improve performability by storing

difficult-to-enter data in files that can be loaded into the test or

by automating some pieces of the test that are hard to do by

hand.

Performable

340Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is reusable if it is easy and inexpensive to reuse it.

● Tests that are not very performable are not easily reused.

● However, a test can be highly performable today but hard to

reuse because the program’s design changes frequently (so

reuse will require maintenance).

Reusable

341Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is maintainable if it is easy to revise in the face of product

changes.

● Good maintainability is critically important for automated

regression testing.

● Maintainability is irrelevant for many exploratory tests. If you

don’t intend to reuse it, you don’t have to invest time making it

maintainable.

Maintainable

342Copyright © 2020 AltomLecture 4 - Scenario Testing

The information value of a test reflects the extent to which the test

will increase your knowledge (reduce “uncertainty“), whether the

program passes or fails the test.

● The question this asks is whether you are designing the test so

that you will learn something of value whether the program

passes or fails the test.

● Most regression tests have relatively little information value.

They are more like demonstrations than like tests because no

one expects them to expose many bugs. “Pass“ teaches you

almost nothing.

Information Value

Karl Popper (e.g.

Conjectures &

Refutations) inspired

our emphasis on the

information value of

tests. Boris Beizer

describes the low

information value of

regression tests as the

“Pesticide Paradox.“

343Copyright © 2020 AltomLecture 4 - Scenario Testing

Exploratory software testing is

● a style of software testing that

● emphasizes the personal freedom and responsibility of the individual

tester

● to continually optimize the value of her work

● by treating

○ test-related learning,

○ test design,

○ test execution, and

○ test result interpretation as

● mutually supportive activities that run in parallel throughout the project.

Information Value

344Copyright © 2020 AltomLecture 4 - Scenario Testing

Coverage measures the amount of testing of a given type that you

have completed, compared to the population of possible tests of

this type.

A test technique is focused on coverage if a designer using the

technique could readily imagine a coverage measure related to the

technique and would tend to create a set of tests that would have

high coverage according to that measure.

No individual test has much coverage, but a group of tests can have

high coverage.

Coverage

345Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is easy to evaluate if the tester can determine easily and

inexpensively whether the program passed or failed the test.

● Scenario tests are often hard to evaluate because the test

creates a lot of output that has to be inspected by a human.

(This is such a problem that we emphasize evaluability as a

criterion for good scenarios.)

Easy to Evaluate

346Copyright © 2020 AltomLecture 4 - Scenario Testing

A test supports troubleshooting if it provides useful information

for the debugging programmer.

● Long-sequence tests must be very carefully designed to

support troubleshooting. When a test fails after 10 hours of

execution of a long sequence, it can be very hard to figure out

what went wrong, when.

● Programs often output event logs that provide diagnostic

information about unusual or undesirable events. These

illustrate ways that the software under test can make tests

more or less effective at supporting troubleshooting.

Supports Troubleshooting

347Copyright © 2020 AltomLecture 4 - Scenario Testing

The design objective is that you should use more complex tests as a

program gets more stable.

● Early in testing, complex tests are almost impossible to run.

You will waste time trying to run complex tests before the

program is stable enough to handle them.

● Later, you can finally run tests that realistically reflect the ways

that experienced users will drive the program.

Appropriately Complex

348Copyright © 2020 AltomLecture 4 - Scenario Testing

A test is accountable if you can explain what you did, justify why

you did it, and provide that you actually conducted the test.

● Accountability is often critical for companies whose tests are

audited or otherwise likely to be inspected by regulators or in

court.

● Accountability can be very costly, and the cost of it can drive

people to rely on regression tests (old, documented tests)

rather than inventing new ones.

Accountable

Session-based test

management is a

popular method

for improving the

accountability

of exploratory

testing.

349Copyright © 2020 AltomLecture 4 - Scenario Testing

The cost of a test includes time and effort associated with it as well

as its directly financial costs.

As an attribute of a test technique, affordability is concerned with:

● The absolute cost of testing in this way.

● Whether you could find this information more cheaply (more

efficiently).

A technique is more affordable if it is designed to reveal better

information at the same cost or equivalent information at a lower

cost.

Affordability

350Copyright © 2020 AltomLecture 4 - Scenario Testing

Because you have an infinite number of potential tests, and

therefore an infinite number of potential test-related task, every test

and every task has opportunity costs.

The opportunity cost of a test refers to what you could have done

instead, if you hadn’t spent your resources running this test.

A common kind of discussion is whether achieving 5% more

coverage of a certain kind is worth the opportunity cost (a different

set of tests or reports will never be started if you spend your

resources this way).

Opportunity Cost

351Copyright © 2020 AltomLecture 4 - Scenario Testing

● Designing for early testing

○ simple tests (e.g. function, domain, use-case, simple combinations)

● Designing for later testing

○ Complex combinations

○ Meaningful scenarios

○ Data-intense (or otherwise complex-to-test) risks

● Scenarios

○ Coherent story

○ Credible

○ Motivating

○ Complex

○ Easy to evaluate

Review (1)

352Copyright © 2020 AltomLecture 4 - Scenario Testing

Good test design involves developing tests that

● Can help you satisfy your information objectives for this project (or this part of

it)

● Address the things that you want to test in ways that can reveal the information

that you want to find out about them

● Are achievable within your constraints

● Include the support materials (code, documentation, etc.) you will need for the

level of reuse you consider appropriate

● Are optimized for the qualities (e.g. power) most important for your purposes

No one technique will fill all of your needs. Use many techniques, designing each test in

a way that makes a given design problem seem easy and straightforward.

Review (2)

353Copyright © 2020 AltomLecture 5 - Domain Testing

Copyright © 2020 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and Rebecca Fiedler, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Test Design
Lecture 5
Domain Testing

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

354Copyright © 2020 AltomLecture 5 - Domain Testing

Course Overview: Fundamental Topics

 1. Function testing & tours
A taxonomy of test techniques

 2. Risk-based testing, failure mode analysis and quicktests
Testing strategy. Introducing the Heuristic Test Strategy Model

 3. Specification-based testing
Work on your assignment

 4. Use cases and scenarios
Comparatively evaluating techniques.

 5. Domain testing: traditional and risk-based
When you enter data, any part of the program that uses that data is a risk. Are you designing for that?

 6. Testing combinations of independent and interacting variables.
Combinatorial, scenario-based, risk-based and logical-implication analyses of multiple variables.

355Copyright © 2020 AltomLecture 5 - Domain Testing

Required

● none for this lecture

Useful to skim

● Hamlet, D. & Taylor, R. (1990). “Partition testing does not inspire confidence”. IEEE Transactions on Software Engineering,
16(12), pp. 1402-1411. https://pdfs.semanticscholar.org/8e68/36093c152992fba2bd66e4e35318fde7a7b2.pdf

● Kaner, C. (2004). “Teaching domain testing: A status report”. Paper presented at the Conference on Software Engineering
Education & Training. http://www.kaner.com/pdfs/teaching_sw_testing.pdf

● Kaner, C., Hoffman, D., & Padmanabhan, S. (2013). Domain Testing: A Workbook.

● Myers, G. J. (1979). The Art of Software Testing. Wiley

● Padmanabhan, S. (2004). Domain Testing: Divide and Conquer. M.Sc. Thesis, Florida Institute of Technology.
http://www.testingeducation.org/a/DTD&C.pdf

● http://www.wikipedia.org/wiki/Stratified_sampling

Today’s Readings

https://pdfs.semanticscholar.org/8e68/36093c152992fba2bd66e4e35318fde7a7b2.pdf
http://www.kaner.com/pdfs/teaching_sw_testing.pdf
http://www.testingeducation.org/a/DTD&C.pdf
http://www.wikipedia.org/wiki/Stratified_sampling

356Copyright © 2020 AltomLecture 5 - Domain Testing

● Able to apply the traditional approach to straightforward cases

● Aware of the underlying complexity of "equivalence" and "boundary."

Understand the basis for the claim that partitioning and selecting boundaries

require judgment, not just mechanical application of algorithms

● Understand the difference(s) between primary and secondary dimensions

● Understand the differences between input variables and result variables, and

applicability of domain testing to both

● Familiar with a conceptual structure for applying this analysis to a broad range

of situations

Today's Learning Objectives

357Copyright © 2020 AltomLecture 5 - Domain Testing

PowerPoint’s Page Setup dialog lets

you specify several aspects of the

design of a slide. Let’s focus on one

of them, Page Width.

Opening Example

358Copyright © 2020 AltomLecture 5 - Domain Testing

How wide is the widest page?

● I don’t see an answer in Help

or any documentation.

● Should I insist on a

specification that tells me

the range of this variable?

● I’ll try a big number and see

what happens.

Opening Example

359Copyright © 2020 AltomLecture 5 - Domain Testing

How wide is the widest page?

● I type in 999 inches

Opening Example

360Copyright © 2020 AltomLecture 5 - Domain Testing

When I click OK, PowerPoint

changes the 999 to 56 inches.

● I guess that’s the limit.

Opening Example

361Copyright © 2020 AltomLecture 5 - Domain Testing

So what happens if I change the width from 10 inches to 56?

A blank slide looks like this at 10.

Opening Example

And like this at 56.

362Copyright © 2020 AltomLecture 5 - Domain Testing

As I try out the dialog, I see that it accepts two digits after the

decimal point.

● It treats 10.12

○ the same as 10.123

○ but differently from 10.129

○ which it turns into 10.13

Opening Example

363Copyright © 2020 AltomLecture 5 - Domain Testing

We’ve been inferring the design of the program from its behavior.

● Sometimes you have a specification.

● Often, all you have is

○ the behavior, and

○ your common sense, and

○ your skill as empirical researchers.

When you infer the design from behavior, pay careful attention to

how the program uses that variable or feature. Are any details of the

use inconsistent with the apparent design?

Opening Example

All of the oracle

heuristics that we

studied in Foundations

are relevant to

evaluating the "facts"

that we discover about

the program's design.

364Copyright © 2020 AltomLecture 5 - Domain Testing

● The upper limit on width appears

to be 56 inches.

● Try 0 for a lower limit:

○ PowerPoint changes it to 1

○ PowerPoint changes 0.9 to 1

● Therefore, the lower limit on

width appears to be 1 inch.

Opening Example

365Copyright © 2020 AltomLecture 5 - Domain Testing

What should I test?

● You could test:

1.00, 1.01, 1.02, 1.03, …

all the way through

...55.97, 55.98, 55.99, 56.00.

● There are 5601 possible tests from 1 inch to 56 inches.

● What will you learn from testing 15.44 that you won’t have

already learned from 15.43?

Opening Example

Rather than

running all 5601

tests, you need a

sampling strategy.

366Copyright © 2020 AltomLecture 5 - Domain Testing

● You cannot afford to run every possible test.

● You need a method for choosing a few powerful tests that will

represent the rest.

The Problem You Have to Solve

Domain testing

(boundary and

equivalence class

analysis) is our

field's most

widely used way

to address this

problem.

367Copyright © 2020 AltomLecture 5 - Domain Testing

Consider the variables X and Y and the function f, where

y = f(x)

● The input domain is the set of values over which the function is defined.

This is the set of values of X.

○ We will call X the input variable.

● The output domain is the set of possible outputs of the function.

This is the set of values of Y.

○ The output domain is also called the range of the function.

○ We will call Y the result variable.

Domain Definitions

Domain testing treats

the program as a

collection of functions

that process input data

in order to provide

results. Domain testing

selects optimal values

of the input domain or

output domain for

testing.

A domain is a set of values associated with a function.

368Copyright © 2020 AltomLecture 5 - Domain Testing

● Treat two tests as equivalent if:

○ they are so similar that

○ it seems pointless to test them both.

● Thus,

○ Two tests are equivalent if you expect the same results

from each.

● An equivalence class is a set of equivalent tests.

Equivalence

369Copyright © 2020 AltomLecture 5 - Domain Testing

Treat

● individual values as

● equivalent to the nearest boundary

value (1 and 56)

● if you believe that,

○ for any value X not on the

boundary

○ if the program fails with X, it

will also fail with one or both of

the boundary cases.

Equivalence

We identified four substantially different definitions

of equivalence in “Teaching domain testing: A status

report” and Domain Testing: A Workbook, but we’ll stick

with this subjective definition in this course.

See Kaner, C. (2004a). “Teaching domain testing: A

status report”. Paper presented at the Conference on

Software Engineering Education & Training.

http://www.kaner.com/pdfs/teaching_sw_testing.pdf

and Kaner, C., Padmanabhan, S., & Hoffman, D. (2013)

Domain Testing: A Workbook.

http://www.kaner.com/pdfs/teaching_sw_testing.pdf

370Copyright © 2020 AltomLecture 5 - Domain Testing

The dialog is designed to reject (replace) any value

● less than 1 or

● greater than 56.

Programmers often make a coding error at the boundary:

● accepting as valid a value that is barely too small or barely too

large, or

● rejecting as invalid a value that is the smallest valid or the

largest valid one.

In testing a range like 1 to 56, testers often test just at the boundaries

(1 and 56), treating the interior values as equivalent to these.

Boundary Cases

371Copyright © 2020 AltomLecture 5 - Domain Testing

Just as you should test the “valid” boundaries, you should test the

invalid ones:

● 0.99 inches

● 56.01 inches

If the program is going to erroneously treat any invalid input as if it

were valid, it will make that mistake with boundary cases because

they are the closest values to the valid ones.

Check the Invalid Values

372Copyright © 2020 AltomLecture 5 - Domain Testing

The Classic Boundary/Equivalence Class Table

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries &
special cases Notes

Page width

1 to 56 inches 1.0

Fixed-point
variable rounded
to 2 digits after
decimal point.

56

<1 0.99

>56 56.01

373Copyright © 2020 AltomLecture 5 - Domain Testing

Don't Do This

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries &
special cases Notes

Page width 1 to 56 inches < 1, > 56
0.99, 1,
56, 56.01

Fixed-point
variable rounded
to 2 digits after
decimal point.

● Some people pack all the sets and all the tests into one row of the table.

● This is easy to understand while you're creating it, but harder to read later.

● It is too easy to not notice important tests or to get confused about the reason some test was

included.

374Copyright © 2020 AltomLecture 5 - Domain Testing

Do This

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries &
special cases Notes

Page width

1 to 56 inches 1.0

Fixed-point
variable rounded
to 2 digits after
decimal point.

56

<1 0.99

>56 56.01

● Separate the tests for the different equivalence classes

● One test per line

● Explain any facts about the variable or reasoning about the tests that are not obvious

375Copyright © 2020 AltomLecture 5 - Domain Testing

It’s not enough to just check whether the program accepts valid

inputs and rejects invalid inputs.

● In unit testing, checking the input filters is appropriate.

● In system testing, checking only the input filters, without

considering the consequences of the input values, is a

hallmark of amateurish testing.

Considering the Consequences

376Copyright © 2020 AltomLecture 5 - Domain Testing

● This paragraph has text.

● This paragraph has text that runs across more than one line so

that you can see what happens when you resize the width of

the slide.

● This paragraph has even more text that runs across even more

than one line so that you can see what happens when you

resize the width of the slide. Lots and lots and lots of text

running on and on down line after line after line.

Test of Resizing a Slide That Has Text Only

The next cluster

of slides illustrates

some tests of

consequences

of changing page

width.

377Copyright © 2020 AltomLecture 5 - Domain Testing

● Test with 56 inches wide and 7.5 inches tall.

● The slide stretches to become very wide

● The text stays the same size (e.g. 24 points) but is no longer wrapped because it fits on one line

● The slide stretches so much that when we paste it here, the text is unreadably small. Let’s

rescale to a narrower still-wide slide.

Test of Resizing a Slide That Has Text Only

378Copyright © 2020 AltomLecture 5 - Domain Testing

● This paragraph has text

● This paragraph has text that runs across more than one line so

that you can see what happens when you resize the width of

the slide

● This paragraph has even more text that runs across even more

than one line so that you can see what happens when you

resize the width of the slide. Lots and lots and lots of text

running on and on down line after line after line.

Test of Resizing a Slide That Has Text Only

This is a copy of

the original again...

379Copyright © 2020 AltomLecture 5 - Domain Testing

● 18 inches wide and 7.5 inches tall.

Test of Resizing a Slide That Has Text Only

380Copyright © 2020 AltomLecture 5 - Domain Testing

Test Resizing a Slide With a Table

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries &
special cases Notes

Page width

1 to 56 inches 1.0

Fixed-point
variable rounded
to 2 digits after
decimal point.

56

<1 0.99

>56 56.01

381Copyright © 2020 AltomLecture 5 - Domain Testing

● 18 inches wide and 7.5 inches tall.

● The columns are wider. The text is the same.

Test Resizing a Slide With a Table

382Copyright © 2020 AltomLecture 5 - Domain Testing

Test Resizing a Slide With a Graphic

383Copyright © 2020 AltomLecture 5 - Domain Testing

● 18 inches wide * 7.5 inches tall

● The text stays the same size. The graphic is stretched.

Test Resizing a Slide With a Graphic

384Copyright © 2020 AltomLecture 5 - Domain Testing

● 25 inches wide * 7.5 inches tall

● The text stays the same size. The graphic is even more obviously stretched.

Test Resizing a Slide With a Graphic

385Copyright © 2020 AltomLecture 5 - Domain Testing

Test Resizing a Slide With an Imported Table

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries &
special cases Notes

Page width

1 to 56 inches 1.0

Fixed-point
variable rounded
to 2 digits after
decimal point.

56

<1 0.99

>56 56.01

386Copyright © 2020 AltomLecture 5 - Domain Testing

● 18 inches wide and 7.5 inches tall.

● Everything inside the table is resized.

Test Resizing a Slide With an Imported Table

387Copyright © 2020 AltomLecture 5 - Domain Testing

● 25 inches wide and 7.5 inches tall.

● Shows the resizing (and distortion of the text) even more clearly.

Test Resizing a Slide With an Imported Table

388Copyright © 2020 AltomLecture 5 - Domain Testing

● Sowmya Padmanabhan used slide resizing as part of her thesis

research on how people learn domain testing.

● At that time,

○ text was also distorted

○ resizing the page multiple times often

■ corrupted the graphics

■ after more resizes, crashed.

● Despite extensive training, not one student found this bug.

● The input field

filter was fine.

● Handling of the

actual data

that was input

was broken.

See Padmanabhan, S. (2004). Domain Testing: Divide and Conquer. http://www.testingeducation.org/a/DTD&C.pdf

Tests of Resizing

http://www.testingeducation.org/a/DTD&C.pdf

389Copyright © 2020 AltomLecture 5 - Domain Testing

● People don’t buy a program so that they can enter data into

fields like page width

● They buy it to create things (analyses or graphics or)

○ They enter the data

○ for the program to use the data

○ to achieve the result.

● If you don’t test the result (the effect of the data you enter)

○ Your tests are missing the point.

○ Their value is minimal.

Testing for Consequences

You should be

especially

interested in

the consequences

when the

program allows

you to enter an

invalid value.

390Copyright © 2020 AltomLecture 5 - Domain Testing

We have studied several parts of the domain testing process:

● Identify the variable of interest

● Determine the type of the variable and the values it can take

● Determine how the program uses this variable

● Partition the variable into valid and invalid equivalence classes

● Test with boundary values

● Test for consequences of the data entered, not just the input

filter

● Describe the tests in a classical boundary/equivalence class

table

Summary to This Point

See the slides at

the end of the

lecture for a more

complete schema

for domain testing.

391Copyright © 2020 AltomLecture 5 - Domain Testing

Input domain: the set of possible values that you can input to the
variable.

Output domain: the set of possible values of an output variable
(such as the actual displayed width of the slide).

Equivalent values: two or more values of a domain that you expect
to yield equivalent (pass/fail) test results.

Equivalence class: a subset of a domain that has equivalent
elements.

Partition: separation of a domain into non-overlapping equivalence
classes.

Input filter: code that blocks input of invalid values.

Definitions

In domain testing, we

partition a domain into

sub-domains

(equivalence classes)

and then test using

best representatives

(e.g. boundary values)

from each sub-domain.

392Copyright © 2020 AltomLecture 5 - Domain Testing

The Page Width variable is looking for values that run from 1 to 56.

● A variable doesn’t only vary on a single dimension. However,

some of these are incidental, having more to do with the

implementation than with the purpose of the variable.

● You can usually determine the primary dimension by asking

what you’re trying to control or to learn from the variable.

Primary Dimension of a Variable

1 56

Just rightToo small Too big

393Copyright © 2020 AltomLecture 5 - Domain Testing

The non-primary dimensions on which a variable can

vary. Examples:

● Number of digits

○ 0 (empty field)

○ 1 to 4 (1 to 56.00)

○ 5 or more

○ The most interesting test might use

thousands of digits

● The character set (ASCII codes)

○ 0 to 47 (“/” is 47) (non-digits)

○ 48 to 57 (“0” to “9”) (digits)

○ 58 to 127 (“:” is 58) (non-digits)

Secondary Dimensions

Myers' triangle program is one of the classic examples

of domain testing. His analysis and many others (e.g.

Binder’s) provide many tests along secondary

dimensions (e.g. testing non-numbers) but they don't

distinguish between primary and secondary

dimensions. This has caused much confusion.

See Myers, G. J. (1979). The Art of Software Testing.

Binder, R. (2000). Testing Object-Oriented Systems (p. 5).

394Copyright © 2020 AltomLecture 5 - Domain Testing

Examples

● Number of digits

● Character codes (ASCII)

● Leading spaces

○ none (this is the typical case)

○ 1 (not unusual)

○ >1 (how many can you have?)

● Spaces between digits

○ 0 (typical)

○ >0 (OpenOffice ignores “invalid” characters inside a number string)

Secondary Dimensions

395Copyright © 2020 AltomLecture 5 - Domain Testing

Secondary Dimensions on the Classical Table

Variable Valid case
Equivalence class

Invalid case
Equivalence class

Boundaries &
special cases Notes

Page width

1 to 56 inches 1.0
Fixed-point
variable rounded
to 2 digits after
decimal point.

56

<1 0.99

>56 56.01

1 to 4 characters 1

55.99

0 (no characters) Delete the value in the
field

>5 55.999 Easy to pass

55.9999... 1000 digits

396Copyright © 2020 AltomLecture 5 - Domain Testing

Domain analysis is pointless with binary variables

because there are no "equivalent" values that you can

skip.

Some Primary Dimensions Are Not
Appropriate for Domain Testing

397Copyright © 2020 AltomLecture 5 - Domain Testing

Secondary Dimensions on the Classical Table

Variable Valid case
Equivalence class

Invalid case
Equivalence class

Boundaries &
special cases Notes

Page width

1 to 56 inches 1.0
Fixed-point
variable rounded
to 2 digits after
decimal point.

56

<1 0.99

>56 56.01

1 to 4 characters 1

55.99

0 (no characters) Delete the value in the
field

>5 55.999 Easy to pass

55.9999... 1000 digits

398Copyright © 2020 AltomLecture 5 - Domain Testing

● If you can order the values that a variable can take, from

smallest to largest:

○ The upper boundary of an equivalence class is the largest

value in the set. Call this boundary value UB.

○ Let ∆ (delta) be the smallest possible difference between

two values

■ Between integers, ∆ = 1

■ Between fixed-point with 5 significant digits after

the decimal, ∆ = 0.00001

● The next boundary of interest is UB + ∆

Choosing Boundaries

Page width

example:

● UB + ∆ = 56.01

● UB = 56

● LB = 10

● LB - ∆ = 9.99

399Copyright © 2020 AltomLecture 5 - Domain Testing

Think of course grades:

● A (90 to 100)

● B (80 to 89)

● C (70 to 79)

● D (60 to 69)

● F (0 to 59)

How should you show these in the table?

Multiple Valid Classes

400Copyright © 2020 AltomLecture 5 - Domain Testing

Multiple Valid Classes

Variable Valid case
Equivalence class

Invalid case
Equivalence class

Boundaries &
special cases Notes

Grade

>100 101 ∆ is 1

90 - 100 100 A

90

80 - 89 89 B

80

70 - 79 79 C

70

60 – 69 69 D

60

50 - 59 59 F

0

<0 -1

401Copyright © 2020 AltomLecture 5 - Domain Testing

The cumulative chi-square probability

distribution function

 Abramowitz & Stegun (1964)

The shape parameter of this function is 𝜈 ("nu").

Hidden Boundaries

By Geek3 - Own work, CC BY 3.0, cropped and k replaced with 𝜈

https://commons.wikimedia.org/w/index.php?curid=9884225

 𝜈
 𝜈
 𝜈
 𝜈
 𝜈
 𝜈

https://commons.wikimedia.org/w/index.php?curid=9884225

402Copyright © 2020 AltomLecture 5 - Domain Testing

Hidden Boundaries

This is an example

of the subjectivity

of testers’

classifications

into equivalence

classes.

● A program might use 3 or more different formulas to calculate Chi-Square

probability values, depending on 𝜈, the number of degrees of freedom.

● Unless you know this internal implementation detail, your testing will probably

treat 𝜈 = 31 in the same equivalence class as 𝜈 = 101, even though the

approximation formulas are entirely different.

Abramowitz & Stegun (1964), Handbook of Mathematical Functions, p. 941, http://people.math.sfu.ca/~cbm/aands/frameindex.htm

http://people.math.sfu.ca/~cbm/aands/frameindex.htm

403Copyright © 2020 AltomLecture 5 - Domain Testing

Consider the Page Width example again.

1) All values greater than 56 are equivalent relative to the risk

that the program's error handling fails with values > 56.

2) In addition, the program might fail when it incorrectly accepts

56.01 as valid (The programmer wrote the inequality wrong:

Statement d instead of Statement a or b).

56.01 belongs to two equivalence classes. It can trigger a failure in

two ways (1 & 2). The other members of the class only have the one

way (1).

Equivalence Is Risk-Based

The code might

CORRECTLY say:

a. Accept all X ≤ 56 or

b. Accept all X < 56.01

Or it might

INCORRECTLY say:

c. Accept all X < 56 or

d. Accept all X ≤ 56.01

404Copyright © 2020 AltomLecture 5 - Domain Testing

Consider the risk of an input overflow.

● How many digits can the program cope with?

○ Will it fail with an entry of 999? 9999?

○ What about 999... (255 characters)?

● Suppose the system is designed to truncate any input string > 5 characters.

○ Relative to the input overflow risk:

■ Entries with 1 to 5 digits are equivalent.

■ 6 chars is the smallest out-of- bounds case.

■ 56.01 is equivalent to 99,999 but not 100,000.

Equivalence Is Risk-Based

405Copyright © 2020 AltomLecture 5 - Domain Testing

Suppose { x1, x2, x3, ..., xn} is a set of equivalent values.

● These are equivalent with respect to some risk

● But they might not be equivalent with respect to some other risks

● For example, as you've seen: {56.01, ..., 99999, 100,000} are equivalent with

respect to some risks

■ they're all bigger than 56,

○ But not with respect to others

■ 56.01 is in its own boundary-risk class

■ 100,000 is in the greater-than-6-digits class, but 56.01 is not.

Equivalence Is Risk-Based

406Copyright © 2020 AltomLecture 5 - Domain Testing

● Often, the best representative is:

○ at least as likely to trigger a failure as any other member of the set

(when you consider the risk they are equivalent against)

■ 56.01 is at least as likely to trigger a bigger-than-56 failure as any

other value bigger than 56

○ more likely to trigger a failure than the other members (relative to

some other risk)

■ 56.01 can trigger a boundary failure. None of the other members

of the bigger-than-56 class can do that.

Best Representative

Boundaries (extreme

values) are typical best

representatives.

A set can have more

than one "best

representative": think

of a set that has more

than one boundary.

A best representative of an equivalence class is the test within that class

most likely to make the program fail.

407Copyright © 2020 AltomLecture 5 - Domain Testing

Imagine testing a program’s compatibility with printers.

● There are thousands of different printers, so you need a

sampling strategy.

● Most printers are “compatible” with some other printer(s), so

you can group printers into equivalence classes.

● But you can’t put printers into an order, so “boundary values”

don’t exist.

● Best representatives of a compatibility set will differ from the

others in terms of vulnerability to some other risk (e.g.

memory management)

Non-Ordered Variables

Kaner, C., Falk, J.,

& Nguyen, H.Q.

presented this

analysis in detail in

Testing Computer

Software (2nd

Edition, 2000a).

408Copyright © 2020 AltomLecture 5 - Domain Testing

More examples:

○ don't fit the traditional mold for equivalence classes

○ so many values that you must sample from them

○ What are their boundary cases?

● Membership in a common group

○ employees vs. non-employees

○ full-time vs. part-time vs. contract

● Equivalent output events

○ perhaps any report will do to answer a simple question like: Will the

program print reports?

● Equivalent environments

○ different languages, same O/S

Non-Ordered Variables

Sometimes, a set has

no best representative.

If there is no reason to

choose one member of

a set over another,

there is no best

representative

(or all of them are).

409Copyright © 2020 AltomLecture 5 - Domain Testing

● Two tests belong to the same equivalence class if you expect the same result

(pass/fail) of each. Testing multiple members of the same equivalence class is,

by definition, redundant testing.

● In an ordered set, boundaries mark the point or zone of transition from one

equivalence class to another. The program is more likely to fail at a boundary,

so these are the best members of (simple, numeric) equivalence classes to use.

● More generally, you look to subdivide a space of possible tests into relatively

few classes and to run a few cases of each. You’d like to pick the most powerful

tests from each class. We call those most powerful tests the

best representatives of the class.

● Xref: stratified sampling: http://www.wikipedia.org/wiki/Stratified_sampling

In Summary: Equivalence Classes and
Representative Values

http://www.wikipedia.org/wiki/Stratified_sampling

410Copyright © 2020 AltomLecture 5 - Domain Testing

● Identify the variable of interest.

● Identify its primary dimension.

● Determine the type of the variable (along the primary dimension) and the values

it can take.

● Determine how the program uses this variable.

● Determine whether you can order the variable's values (from smallest to

largest).

● Partition the variable's domain into equivalence classes.

● Test with best representatives.

● Test for consequences of the data entered, not just the input filter.

● Describe the tests in a classical boundary/equivalence class table.

● Identify secondary dimensions. Analyze them in the traditional way.

Summary of Our Process (So Far)

In domain testing, we

partition a domain into

sub-domains

(equivalence classes)

and then test using

best representatives

(e.g. boundary values

from each sub-domain.

411Copyright © 2020 AltomLecture 5 - Domain Testing

`

“Before beginning this book, it is strongly recommended that you take the following

short test. The problem is the testing of the following program:

The program reads three integer values from a card. The three values are

interpreted as representing the three sides of a triangle. The program prints a

message that states whether the triangle is scalene, isosceles, or equilateral.

On a sheet of paper, write a set of test cases (i.e. specific sets of data) that you feel

would adequately test this program.”

The Myers Example

Glen Myers (1979). The Art of Software Testing (p.1)

412Copyright © 2020 AltomLecture 5 - Domain Testing

Common Test Ideas for Page Width
(Floating Point Fields)

Page too small (< 1) Too few characters Leading zero Unicode chars not in ASCII

Lower bound (1) Max number of digits Many leading zeros No decimal point

Upper bound (56)
Max number of digits,
plus a decimal point

Leading "+" sign Two decimal points

Page too wide (> 56) Max digits plus spaces
Many leading "+"
signs

Commas (thousands
separators)

0
Too many digits Mix leading "+" and spaces

Commas in
inappropriate places

Negative number Way too many digits Non-digits (such as "/" and ":") Expressions

Far below the lower
bound (e.g. -999...)

Whitespace only
(spaces or tabs)

Uppercase letters Scientific notation

Far above the upper
bound

Leading space Lowercase letters
Scientific notation
with invalid values

Empty cell Many leading spaces Upper ASCII chars
Scientific notation:
out-of-bounds values

413Copyright © 2020 AltomLecture 5 - Domain Testing

A New Table: Risk/Equivalence

Variable
Risk
(potential
failure)

Class that should
not trigger this
failure

Class that might
trigger this
failure

Test cases
(best
representatives)

Notes

Page
width

Impossibly small
page ≥ 1.00 1.00

< 1 0.99

0

-1

Distorted graphics Don't resize the page don't resize

Resize a page that
has no graphics resize blank slide

Place graphics. Use
different formats.
Resize to different
height/width ratio

1.00 Stretch only width.
Don't stretch width
and height
proportionally

56.00

414Copyright © 2020 AltomLecture 5 - Domain Testing

Focus on the individual variable

● or on a small group of related variables (because that’s what

you do in domain testing)

Identify “all” the ways the variable could be involved in a failure

● For each risk, create equivalence classes

○ One set shouldn’t trigger this failure (in the old jargon,

“valid cases”)

○ The others should have the potential to trigger the failure

○ The best representative in each class is the one most

likely to trigger the failure

Risk/Equivalence Analysis

415Copyright © 2020 AltomLecture 5 - Domain Testing

● Some people prefer to add an Expected Results column to

their domain testing tables

● You can add this column to either table, the classical one or

the risk/equivalence one.

● What value is the expected value?

○ The one the program SHOULD give if it is working

correctly

○ Not the one you hope to see if it fails.

○ Describe hoped-for failures in your Notes column.

Adding Expected Results to the Tables

Sometimes you'll

run tests without

knowing your

expected results.

If you don't know

the answer, try it

and find out.

416Copyright © 2020 AltomLecture 5 - Domain Testing

In practice: I often create the classical table early in testing, shifting to the risk/equivalence table as I learn more about software

under test.

Comparing the Tables
The Classical

Table

● The classical table excels at making boundary tests obvious, so that with a minimum of training, people can

create the table or read and understand it.

The Risk/

Equivalence

Table

● The risk-oriented table is a little more complex to work with when you are dealing with simple variables. We

often prefer the classical table for simple, academic examples.

● The weakness of the very simple examples is that they are divorced from real-life software. You analyze a

variable, but you don’t know why a program needs it, what the program will do with it, what other variables

will be used in conjunction with it. As soon as you know the real-life information, many risks (should) become

apparent, risks that you can study by testing different values of this variable.

● The risk-oriented table helps you organize that testing. Any time you are thinking beyond the basic “too big/

too small” tests, this style of table might be more helpful than the classical one.

417Copyright © 2020 AltomLecture 5 - Domain Testing

Suppose:

● I, J, and K are unsigned integers.

● K = f (I, J) = I * J

○ Input domain: {(I,J)}

○ Output domain {K}

K is a result variable.

● You can enter values into I and J.

● You cannot enter values into K.

● The program calculates the value of K.

Result Variables

418Copyright © 2020 AltomLecture 5 - Domain Testing

K = f (I, J) = I * J

Do a domain analysis on K.

● This is a reasonable requirement.

● It’s like testing:

○ the balance (how much money you have) in your

checking account

○ the amount on your paycheck (hours * rate of pay –

deductions)

Result Variables

If you WERE

testing I or J, you

should also test K

because the value

of K is a

consequence of

the values you

enter into I or J.

419Copyright © 2020 AltomLecture 5 - Domain Testing

The Analysis (Result Variable)

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries &
special cases Notes

K

0 to MaxInt 0 Unsigned (all values
positive)

MaxInt

< 0 Can’t do that I, J can't be negative

> MaxInt MaxInt + 1

MaxInt * MaxInt

This table shows what values of K you want to test.

Now you have to figure out what values of I and J to use in order to generate those values of K.

420Copyright © 2020 AltomLecture 5 - Domain Testing

Consider K = 0. Several (I,J) pairs will yield this value of K.

An (I,J) pair includes a value of I and a value of J. For example,

(1, 2) means I = 1 and J =2

The full set can be described like this:

{(I, J) | I * J = 0}

This is read as “The set of all pairs of I and J such that I times J

equals 0”.

The Analysis (Result Variable)

421Copyright © 2020 AltomLecture 5 - Domain Testing

Continuing the analysis:

{(I, J) | I * J = 0}

= {(I, J) | I = 0 or J = 0}

This is an equivalence set on the (I, J)’s. The set includes

● (0, 0),

● (1, 0),

● (MaxInt, 0)

● (0, 1)

● (0, MaxInt)

● intermediate values, like (0, 2000).

The Analysis (Result Variable)

422Copyright © 2020 AltomLecture 5 - Domain Testing

The Analysis (Result Variable)

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries
& special
cases

I J Notes

K

0 to MaxInt 0 0 0 {(I, J) | I = 0 or J = 0}

0 MaxInt

MaxInt 0

MaxInt

< 0 Can’t do that

> MaxInt MaxInt + 1

MaxInt * MaxInt

423Copyright © 2020 AltomLecture 5 - Domain Testing

For other values

of MaxInt, the set

will be different.

Continuing the analysis:

{(I, J) | I * J = MaxInt}

For example, if MaxInt is 216-1, then this equivalence set on the (I, J)’s includes

● (1, MaxInt) and (MaxInt,1)

● (3, 21845) and (21845, 3)

● (5, 13107) and (13107, 5)

● (15, 4369) and (4369, 15)

● (17, 3855) and (3855, 17)

● (51, 1285) and (1285, 51)

● (85, 771) and (771, 85) and

● (255, 257) and (257, 255)

The Analysis (Result Variable)

424Copyright © 2020 AltomLecture 5 - Domain Testing

The Analysis (Result Variable)

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries
& special
cases

I J Notes

K

0 to MaxInt 0 0 0 {(I, J) | I = 0 or J = 0}

0 MaxInt

MaxInt 0

MaxInt 1 MaxInt {(I, J) | I * J = MaxInt}

MaxInt 1

< 0 Can’t do that

> MaxInt MaxInt + 1

MaxInt * MaxInt

425Copyright © 2020 AltomLecture 5 - Domain Testing

The Analysis (Result Variable)

Variable
Valid case
equivalence
class

Invalid case
equivalence
class

Boundaries
& special
cases

I J Notes

K

0 to MaxInt 0 0 0 {(I, J) | I = 0 or J = 0}

0 MaxInt

MaxInt 0

MaxInt 1 MaxInt {(I, J) | I * J = MaxInt}

MaxInt 1

< 0 Can’t do that

> MaxInt MaxInt + 1 2^(N/2) 2^(N/2) where MaxInt = 2^N - 1

MaxInt * MaxInt MaxInt MaxInt

426Copyright © 2020 AltomLecture 5 - Domain Testing

(y1, y2, ..., ym) = f (x1, x2 , ..., xn)

● X = (x1, x2, ..., xn) is the input variable

● {(x1, x2, ..., xn)} is the input domain

● Y = (y1, y2, ..., ym) is the result variable

● {(y1, y2, ..., ym)} is the output domain

Y = f (X) is the same as (y1, y2, ..., ym) = f (x1, x2, ..., xn)

Result Variables: Generalizing the Notation

Reminder:

(I, J) is a 2-tuple, and

(x1, x2, ..., xn) is an n-tuple.

If you've forgotten this,

look back at your course

notes from Foundations.

427Copyright © 2020 AltomLecture 5 - Domain Testing

When Y = F(X),

To test Y

 1. Figure out what values of Y you want to test

 2. Figure out what values of X will generate that value of Y

 3. For a given Y, there will be an equivalence set of X values.

 Identify the set

 4. Pick one or more X's from the set

Result Variables: A 4-Step Summary

This is just the first

part of the design of

the test.

● What are the

consequences?

● What are the

oracles (for the

result, and for each

consequence)?

428Copyright © 2020 AltomLecture 5 - Domain Testing

Independent Components

Page Setup has five independent

variables:

● Page Width (1 to 56)

● Page Height (1 to 56)

● Number slides from... (0 to

9999)

● Slide orientation

● Notes orientation

Looking Ahead at Multi-Dimensional Variables

For our purposes,

“independent” means

that the value of one

variable doesn’t limit

the values you can

enter into the other

variable.

429Copyright © 2020 AltomLecture 5 - Domain Testing

Non-independence example:

● Is 31 a valid day of the month?

○ December 31 is valid

○ February 31 is not

Components constrain each other:

● Date field (Year – Month – Day)

○ Some years have 366 days, most have 365

○ Some months have

■ 31 days

■ 30 days

■ 29 days

■ 28 days

Looking Ahead at Multi-Dimensional Variables

You need a sampling

strategy - we can’t test

all possible dates (and

the consequences of

selecting each date) -

but simplistic testing

at the boundaries

won’t work.

430Copyright © 2020 AltomLecture 5 - Domain Testing

`

1. Characterize the variable

● Identify the potentially interesting variables.

● Identify the variable(s) you can analyze now. This is the variable(s) of interest.

● Determine the primary dimension of the variable of interest.

● Determine the type and scale of the variable's primary dimension and what

values it can take.

● Determine whether you can order the variable's values (from smallest to

largest).

● Determine whether this is an input variable or a result (or both).

● Determine how the program uses this variable.

● Determine whether other variables are related to this one.

Summary: A Schema for Domain Testing

From Kaner, Hoffman & Padmanabhan (2013). Domain Testing: A Workbook

431Copyright © 2020 AltomLecture 5 - Domain Testing

`

2. Analyze the variable and create tests

● Partition the variable (its primary dimension)

○ If the dimension is ordered, determine its sub-ranges and transition

points.

○ If the dimension is not ordered, base partitioning on similarity.

● Lay out the analysis in the classical boundary/equivalence class table. Test with

best representatives.

● Create tests for the consequences of the data entered, not just the input filter.

● Identify secondary dimensions. Analyze them in the classical way.

● Summarize your analysis with a risk/equivalence table.

Summary: A Schema for Domain Testing

From Kaner, Hoffman & Padmanabhan (2013). Domain Testing: A Workbook

432Copyright © 2020 AltomLecture 5 - Domain Testing

`

3. Generalize to multidimensional variables

● Analyze independent variables that should be tested together.

● Analyze variables that hold results.

● Analyze non-independent variables. Deal with relationships

and constraints.

Summary: A Schema for Domain Testing

From Kaner, Hoffman & Padmanabhan (2013). Domain Testing: A Workbook

433Copyright © 2020 AltomLecture 5 - Domain Testing

`

4. Prepare for additional testing

● Identify and list unanalyzed variables. Gather information for

later analysis.

● Imagine (and document) risks that don't necessarily map to an

obvious dimension.

Summary: A Schema for Domain Testing

From Kaner, Hoffman & Padmanabhan (2013). Domain Testing: A Workbook

434Copyright © 2020 AltomLecture 5 - Domain Testing

Closing Thoughts

● Domain analysis is a sampling strategy to cope with the

problem of too many possible tests.

● Traditional domain analysis considers numeric input

and output fields.

● Boundary analysis is optimized to expose a few types

of errors such as miscoding of boundaries or ambiguity

in definition of the valid/invalid sets.

○ However, there are other possible errors that

boundary tests are insensitive to.

● The underlying concepts are simple.

● When you apply the concepts, domain testing starts out

straightforward, but anything beyond the basics requires

judgment.

○ When you say that this is equivalent to that, that’s a

judgment call on your part. They are probably equivalent in

some ways and not equivalent in others.

● To a large degree, your decisions about equivalence, and your

selection of specific values to test will be driven by the risk you

want to explore about how the program might fail and how

these variables might help you make the program fail in this

way.

435Copyright © 2020 AltomLecture 6 - Multivariable Testing

Copyright © 2020 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and Rebecca Fiedler, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Test Design
Lecture 6
Multivariable Testing

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

436Copyright © 2020 AltomLecture 6 - Multivariable Testing

Course Overview: Fundamental Topics

 1. Function testing & tours
A taxonomy of test techniques

 2. Risk-based testing, failure mode analysis and quicktests
Testing strategy. Introducing the Heuristic Test Strategy Model

 3. Specification-based testing
Work on your assignment

 4. Use cases and scenarios
Comparatively evaluating techniques.

 5. Domain testing: traditional and risk-based
When you enter data, any part of the program that uses that data is a risk. Are you designing for that?

 6. Testing combinations of independent and interacting variables.
Combinatorial, scenario-based, risk-based and logical-implication analyses of multiple variables.

437Copyright © 2020 AltomLecture 6 - Multivariable Testing

Required reading

● Czerwonka, J. (2008), “Pairwise testing in the real world: Practical extensions to test-case scenarios”.
http://msdn.microsoft.com/en-us/library/cc150619.aspx

Recommended reading

● Bach, J., and P. Schroeder (2004), “Pairwise Testing: A Best Practice that Isn’t.” Proceedings of the 22nd Pacific Northwest
Software Quality Conference, 180–196. http://www.testingeducation.org/wtst5/PairwisePNSQC2004.pdf

● Bolton, M. (2007). “Pairwise testing”. http://www.developsense.com/pairwiseTesting.html

● Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). “The AETG System: An Approach to Testing Based on
Combinatorial Design”. IEEE Transactions on Software Engineering, 23(7).
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.260.264&rep=rep1&type=pdf

● For more references, see http://www.pairwise.org/

Today’s Readings

http://msdn.microsoft.com/en-us/library/cc150619.aspx
http://www.testingeducation.org/wtst5/PairwisePNSQC2004.pdf
http://www.developsense.com/pairwiseTesting.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.260.264&rep=rep1&type=pdf
http://www.pairwise.org/

438Copyright © 2020 AltomLecture 6 - Multivariable Testing

The PowerPoint Page Setup dialog shows several independent variables, including:

● Page Width (1 to 56)

● Page Height (1 to 56)

● Number slides from... (0 to 9999)

Independent Variables:
The Page Setup Example

For our purposes,

“independent” means

that the value of one

variable doesn’t

limit the values you

can enter into the

other variable.

439Copyright © 2020 AltomLecture 6 - Multivariable Testing

● Before testing variables in combination, test them individually

● Why bother to test them together?

○ Unexpected constraints on what you can enter

○ Unexpected consequences of the combination

What Should You Test Together, and Why?

440Copyright © 2020 AltomLecture 6 - Multivariable Testing

Remember from BBST Foundations:

Consider variables V1, V2, ..., Vk

where

V1 has N1 possible values,

V2 has N2 possible values, etc.

and the variables are all independent.

The number of tests of combinations of the Vi's is

N1 * N2 * ... * Nk

What Values Should You Test?

441Copyright © 2020 AltomLecture 6 - Multivariable Testing

In this case, there are

● 5601 possible values of Page Width

● 5601 possible values of Page Height

● 10000 possible values of starting page number

= 5601 * 5601 * 10000

= 313,712,010,000 possible tests

With so many possibilities, you have to select your tests with care.

What Values Should You Test?

442Copyright © 2020 AltomLecture 6 - Multivariable Testing

● The last calculation ignored invalid values.

● Typically:

○ Test invalid values in tests of the individual variables and

don’t test them in combination testing, or

○ Include a few tests with invalid values, each with a

carefully chosen set of values to maximize the chance of

exposing a suspected error.

What Values Should You Test?

In this section of

this course, we

will ignore

invalid values.

443Copyright © 2020 AltomLecture 6 - Multivariable Testing

● 1 ≤ Height ≤ 56

● 1 ≤ Width ≤ 56

All values on the square or inside it are valid

page sizes.

With independent variables, test at intersections

of boundaries (the corners):

(1, 1), (1, 56), (56, 1), (56, 56)

Page Width & Page Height

56

56

1

1

444Copyright © 2020 AltomLecture 6 - Multivariable Testing

With three independent variables, the cube

shows the valid domain.

The 8 corners are the usual valid-boundary tests.

Page Width, Page Height & Page Number

56

56

1

1 0

9999

Width

H
ei

gh
t

Page
Number

445Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combination Chart

In a combination test, test several

variables together.

Each test explicitly sets values for each

variable under test.

The combination chart shows the variable

settings for each test.

Width Height Page
Number

Test 1 1 1 0

Test 2 1 1 9999

Test 3 1 56 0

Test 4 1 56 9999

Test 5 56 1 0

Test 6 56 1 9999

Test 7 56 56 0

Test 8 56 56 9999

446Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combination Coverage: All Singles

The All Singles coverage criterion is met if you include each value of

each variable in at least one test.

Width Height Page Number

Test 1 1 1 0

Test 2 56 56 9999

447Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combination Coverage: All Pairs

The All Pairs coverage criterion is met if you include each pair of

values of each pair of variables in at least one test.

Width Height Page Number

Test 1 1 1 0

Test 2 1 56 9999

Test 3 56 1 9999

Test 4 56 56 0

448Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combination Coverage: All Triples

The All Triples coverage criterion is met if

you include each 3-tuple of values of each

group of 3 variables in at least one test.

Width Height Page
Number

Test 1 1 1 0

Test 2 1 1 9999

Test 3 1 56 0

Test 4 1 56 9999

Test 5 56 1 0

Test 6 56 1 9999

Test 7 56 56 0

Test 8 56 56 9999

449Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combination Coverage: All N-tuples

If you test N variables together, you meet

the All N-tuples criterion by including

every possible combination of the

variables.

Width Height Page
Number

Test 1 1 1 0

Test 2 1 1 9999

Test 3 1 56 0

Test 4 1 56 9999

Test 5 56 1 0

Test 6 56 1 9999

Test 7 56 56 0

Test 8 56 56 9999

450Copyright © 2020 AltomLecture 6 - Multivariable Testing

Classic example of combination testing:

● O/S: Windows, MacOS, Linux

● Printer: HP, Epson, Lexmark

● Memory: Low, Medium, High

● Processor: 1-core, 2-core, 4-core

● Graphics: Slow, medium, fast

● Hard drive: 0 drives, 1 drive, 2 drives

● Number of possible tests =

3 * 3 * 3 * 3 * 3 * 3 = 729

Configuration Testing: Independent Variables

451Copyright © 2020 AltomLecture 6 - Multivariable Testing

1. Select the variables to test

2. Select the test values for each variable

○ You want the smallest reasonable set for each variable

because you are multiplying the numbers

3. Assign 1-character abbreviations for each value of each

variable, to make the chart simple

4. Decide on your coverage criterion

5. Create the combination chart

Setting Up for Combination Testing
(If You’re Creating the Combination Table by Hand)

In the config test

example, we’ve

done the first two

steps already.

452Copyright © 2020 AltomLecture 6 - Multivariable Testing

Abbreviations of Our Variables

O/S: Processor: Memory:

1. Windows 7 1. 1-core 1. Low

2. VISTA 2. 2-core 2. Medium

3. XP 3. 4-core 3. High

Printer: Graphics: Hard drive:

1. HP 1. Slow 1. 0 drives

2. Epson 2. Medium 2. 1 drive

3. Lexmark 3. Fast 3. 2 drives

453Copyright © 2020 AltomLecture 6 - Multivariable Testing

1. Select the variables to test

2. Select the test values for each variable

○ You want the smallest reasonable set for each variable

because you are multiplying the numbers

3. Assign 1-character abbreviations for each value of each

variable, to make the chart simple

4. Decide on your coverage criterion

5. Create the combination chart

Setting Up for Combination Testing
(If You’re Creating the Combination Table by Hand)

In the config test

example, we’ve

done the first two

steps already.

454Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Singles

Test

● every value

○ (every value you decided to test)

● of each variable

● at least once.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1 1 1

Test 2 2 2 2 2 2 2

Test 3 3 3 3 3 3 3

455Copyright © 2020 AltomLecture 6 - Multivariable Testing

Add one variable to the table at a time.

Sort the variables

● put the variable with the most values in the first column

● the second-most values in the second column

● for example, if you were testing 4 types of printers (and stayed

with 3 of everything else), we’d add printers first

All Pairs

456Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

In this case, each variable has 3 values.

The number of pairs of the first two values is 3 * 3 = 9

O/S Printer Memory Processor Graphics Drive

Test 1 1 1

Test 2 1 2

Test 3 1 3

Test 4 2 1

Test 5 2 2

Test 6 2 3

Test 7 3 1

Test 8 3 2

Test 9 3 3

457Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

Add the third variable.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1

Test 2 1 2 2

Test 3 1 3 3

Test 4 2 1 2

Test 5 2 2 3

Test 6 2 3 1

Test 7 3 1 3

Test 8 3 2 1

Test 9 3 3 2

458Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

Add the fourth variable.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1

Test 2 1 2 2 2

Test 3 1 3 3 3

Test 4 2 1 2 3

Test 5 2 2 3 1

Test 6 2 3 1 2

Test 7 3 1 3 2

Test 8 3 2 1 3

Test 9 3 3 2 1

459Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

We’ll need more rows for a

fifth variable

Start by checking for all-pairs

in the first and fifth columns.

No extra tests are needed

(yet).

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1 1

Test 2 1 2 2 2 2

Test 3 1 3 3 3 3

Test 4 2 1 2 3 1

Test 5 2 2 3 1 3

Test 6 2 3 1 2 2

Test 7 3 1 3 2 2

Test 8 3 2 1 3 1

Test 9 3 3 2 1 3

Test 10

Test 11

Test 12

Test 13

Test 14

460Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

Now take care of the second

and fifth columns.

I’m showing the values you

need for testing.

You can fill any other values in

Tests 10 and 11 and achieve

coverage.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1 1

Test 2 1 2 2 2 2

Test 3 1 3 3 3 3

Test 4 2 1 2 3 1

Test 5 2 2 3 1 3

Test 6 2 3 1 2 2

Test 7 3 1 3 2 2

Test 8 3 2 1 3 1

Test 9 3 3 2 1 3

Test 10 1 3

Test 11 3 1

Test 12

Test 13

Test 14

461Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

Third column and fifth.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1 1

Test 2 1 2 2 2 2

Test 3 1 3 3 3 3

Test 4 2 1 2 3 1

Test 5 2 2 3 1 3

Test 6 2 3 1 2 2

Test 7 3 1 3 2 2

Test 8 3 2 1 3 1

Test 9 3 3 2 1 3

Test 10 1 1 3

Test 11 3 3 1

Test 12

Test 13

Test 14

462Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

Fourth column and fifth.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1 1

Test 2 1 2 2 2 2

Test 3 1 3 3 3 3

Test 4 2 1 2 3 1

Test 5 2 2 3 1 3

Test 6 2 3 1 2 2

Test 7 3 1 3 2 2

Test 8 3 2 1 3 1

Test 9 3 3 2 1 3

Test 10 1 1 2 3

Test 11 3 3 2 1

Test 12 1 2

Test 13 3 2

Test 14

463Copyright © 2020 AltomLecture 6 - Multivariable Testing

All Pairs

And here’s the 6th variable.

The more you have, the harder

it gets, but the greater the

savings compared to the total

number of combinations.

O/S Printer Memory Processor Graphics Drive

Test 1 1 1 1 1 1 1

Test 2 1 2 2 2 2 2

Test 3 1 3 3 3 3 3

Test 4 2 1 2 3 1 2

Test 5 2 2 3 1 3 1

Test 6 2 3 1 2 2 3

Test 7 3 1 3 2 2 3

Test 8 3 2 1 3 1 3

Test 9 3 3 2 1 3 2

Test 10 1 1 2 3 2

Test 11 3 3 3 2 1 1

Test 12 2 2 1 2 3

Test 13 2 3 2 1

Test 14 3 2

464Copyright © 2020 AltomLecture 6 - Multivariable Testing

Greetings From Open Office Impress

465Copyright © 2020 AltomLecture 6 - Multivariable Testing

What can you do with a table?

● You can add up to 75 rows and up to 75 columns.

● What can you fit in these rows and columns?

● You can specify the height and width of the cells.

● The possible values depend on the number of rows/columns

compared to the size of the page.

Let’s Put a Table on the Slide

466Copyright © 2020 AltomLecture 6 - Multivariable Testing

1. Select the variables to test

2. Select the test values for each variable

○ You want the smallest reasonable set for each variable

because you are multiplying the numbers

3. Assign 1-character abbreviations for each value of each

variable, to make the chart simple

4. Decide on your coverage criterion

5. Create the combination chart

Setting Up for Combination Testing
(If You’re Creating the Combination Table by Hand)

467Copyright © 2020 AltomLecture 6 - Multivariable Testing

The printable area within a cell is also changed by the thickness

of the cell’s border.

Setting Up for Combination Testing

468Copyright © 2020 AltomLecture 6 - Multivariable Testing

Add Some Text

● Sans Serif faces are plain, like this one.

● Serif typefaces have little doo-dads

(called serifs). Some programs

mis-estimate the size of a character with

a serif, especially letters like W and W.

● If the W is too wide to fully fit in the

cell, many programs will print

placeholder text (like “...”) instead of

half the character.

469Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combinations

Now organize this to facilitate all-pairs combination testing...

ROWS: 1 row, 75 rows 1, 75

ROW HEIGHT: small, large, max possible for this table S, L, M

COLUMNS: 1 column, 75 columns 1, 75

COLUMN WIDTH: small, large, max possible for this table S, L, M

BORDER: none, wide, max for this cell N, W, M

TYPEFACE: Arial (sans serif), Century (serif), Century italic A, C, I

TEXT SIZE: Barely fits, Barely too big, Way too big F, T, W

470Copyright © 2020 AltomLecture 6 - Multivariable Testing

Create the Combination Table

● Start by organizing the variables: most values-to-test to fewest
● Set up the first pairs

Row height Column width Border Typeface Text size Rows Columns

1 S S

2 S L

3 S M

4 L S

5 L L

6 L M

7 M S

8 M L

9 M M

471Copyright © 2020 AltomLecture 6 - Multivariable Testing

Add the Next Variable

● Check to make sure that every value of this variable pairs with every value of every other variable

Row height Column width Border Typeface Text size Rows Columns

1 S S N

2 S L W

3 S M M

4 L S W

5 L L M

6 L M N

7 M S M

8 M L N

9 M M W

472Copyright © 2020 AltomLecture 6 - Multivariable Testing

Add the Next Variable

● Check to make sure that every value of this variable pairs with every value of every other variable

Row height Column width Border Typeface Text size Rows Columns

1 S S N A

2 S L W C

3 S M M I

4 L S W I

5 L L M A

6 L M N C

7 M S M C

8 M L N I

9 M M W A

473Copyright © 2020 AltomLecture 6 - Multivariable Testing

Add the Next Variable

Row height Column width Border Typeface Text size Rows Columns

1 S S N A F

2 S L W C T

3 S M M I W

4 L S W I F

5 L L M A T

6 L M N C W

7 M S M C T

8 M L N I W

9 M M W A F

10 S L M C F

11 L M N I T

12 M S W A W

474Copyright © 2020 AltomLecture 6 - Multivariable Testing

Add the Next Variable

Row height Column width Border Typeface Text size Rows Columns

1 S S N A F 1 1

2 S L W C T 1 75

3 S M M I W 75 1

4 L S W I F 75 75

5 L L M A T 75 1

6 L M N C W 1 75

7 M S M C T 75 1

8 M L N I W 1 1

9 M M W A F 75 75

10 S L M C F 1 75

11 L M N I T 75 1

12 M S W A W 1 1

475Copyright © 2020 AltomLecture 6 - Multivariable Testing

See Jorgensen, P. (2008, 3rd Ed.). Software Testing: A Craftsman’s Approach

Some Terminology

Jorgensen makes three distinctions that students often find

helpful in puzzling through the coverage decisions made in a

combination test:

● “Exhaustive” vs. “Equivalence class”

● “Robust” vs. “Normal”

● “Strong” vs. “Weak”

476Copyright © 2020 AltomLecture 6 - Multivariable Testing

Consider a single variable with one dimension and a simple class of

valid values:

0 < X < 24

Run two tests for every boundary:

● the boundary-valid values (24-∆ and 0+∆)

● the boundary-invalid values (24 and 0)

You end up with 4 values:

● Too-low (TL) and valid lowest (VL)

● Too-big (TB) and valid biggest (VB) where

TL = VL- ∆ and TB=VB+∆

Terminology: Exhaustive Versus Equivalence

477Copyright © 2020 AltomLecture 6 - Multivariable Testing

● In multi-dimensional testing, start by testing each dimension

on its own, reasonably thoroughly.

● Then decide to either test

○ exhaustively (every value of the variable), or using only

○ equivalence class representatives

(such as TL, VL, VB and TB)

Terminology: Exhaustive Versus Equivalence

In combination testing,

when we say “combine

every value of a

variable”, we mean

every value that we

have decided to test.

This may be an

exhaustive sample,

the equivalence class

subset, or some other

defined list.

478Copyright © 2020 AltomLecture 6 - Multivariable Testing

● “Normal”: Includes only “valid” cases

● “Robust”: Includes error cases as well

Some Terminology

I typically do

"robust" testing

of individual

variables and

"normal" testing

of combinations.

479Copyright © 2020 AltomLecture 6 - Multivariable Testing

● “Weak”: Each value of each variable will appear in at least one

combination. (All singles)

● “Strong”: Each value of each variable appears in combination

with each other variable. (All N-tuples)

Some Terminology

480Copyright © 2020 AltomLecture 6 - Multivariable Testing

● Three numeric variables, V1, V2 and V3.

● Equivalence class and boundary analysis yields these test

values

○ V1: TL, VL, VB and TB

○ V2: TL, VL, VB and TB

○ V3: TL, VL, VB and TB

3-Variable Example

TL: too low

VL: valid lowest

VB: valid biggest

TB: too big

481Copyright © 2020 AltomLecture 6 - Multivariable Testing

● All singles, including invalid values

● Create enough tests to cover every value of every variable, once. If the largest

number of values is N, you need only N tests

● Note the collisions of error cases. If Test 3 fails, is it because of the bad value of

V1, V2, V3, or some combination of them?

Weak Robust Equivalence

What bug do you

expect to find in Test 3

that you would not

find in a test of single

dimension, with a bad

value? Why do you

need a combination of

invalid values?

V1 V2 V3

Test 1 VL VL VL

Test 2 VB VB VB

Test 3 TL TL TL

Test 4 TB TB TB

482Copyright © 2020 AltomLecture 6 - Multivariable Testing

Weak Robust Equivalence Revised

Treat error cases specially:

● All-singles for “valid" (non-error) inputs

● Add tests that allow one error per test case.

V1 V2 V3

Test 1 VL VL VL

Test 2 VB VB VB

Test 3 TL VL VB

Test 4 VB TL VL

Test 5 VL VL TL

Test 6 TB VB VL

Test 7 VL TB VB

Test 8 VB VL TB

483Copyright © 2020 AltomLecture 6 - Multivariable Testing

All singles

● Only valid values

● Test invalid cases in single-variable tests, not combination tests.

Note the coverage that you do and do not achieve:

● You have a test for every valid value of interest of every variable

● You might catch some interactions among variables, but there is no coverage of

interactions.

Weak Normal Equivalence

We often add a

few market-critical

combinations to

an all-singles set

of tests.

V1 V2 V3

Test 1 VL VL VL

Test 2 VB VB VB

484Copyright © 2020 AltomLecture 6 - Multivariable Testing

Strong Normal Equivalence

A variable might have

• more than one valid

equivalence class

• and more than 2

values of interest.

V1 V2 V3

Test 1 VL VL VL

Test 2 VL VL VB

Test 3 VL VB VL

Test 4 VL VB VB

Test 5 VB VL VL

Test 6 VB VL VB

Test 7 VB VB VL

Test 8 VB VB VB

● All N-tuples
● Valid values only
● Test error cases in one-variable tests

● If there are N independent
dimensions, and you test only VL
and VB for each, there are 2N tests

485Copyright © 2020 AltomLecture 6 - Multivariable Testing

● All N-tuples

● The table is too big to show here

● With N independent dimensions,

○ TL, VL, VB, TB yields 4 values per dimension

○ 4N tests

Strong Robust Equivalence

Tests that include

several errors

are of interest

only if you think

that multiple

errors might have

some type of

cumulative effect.

486Copyright © 2020 AltomLecture 6 - Multivariable Testing

So, now you know what tests to run, right?

(Well, maybe not…)

What if memory management is a risk?

(It is...)

What tests do you need to run to understand the impact of table

size (combined with table cell content) on memory management?

You have to study consequences in your testing, not just inputs.

What Are the Risks?

487Copyright © 2020 AltomLecture 6 - Multivariable Testing

● Discussions of combination testing typically focus on the

variables you’re going to test and the values you’re going to

test them with.

● But what’s the test?

○ Setting the variables to their values is only the first step

○ Running some basic stability tests is unlikely to tell you

much

● What are the consequences of this combination?

Consequences, Consequences

488Copyright © 2020 AltomLecture 6 - Multivariable Testing

● For example, test a configuration that includes a new printer

and a new video card. What should you test?

○ Basic printer functions

○ Basic display functions

○ But what involves printers and video?

■ e.g. print preview

Consequences, Consequences

489Copyright © 2020 AltomLecture 6 - Multivariable Testing

● For example, test page layout with:

○ margins, headers and footers

● Big fonts might not be very interesting to test for most

documents

○ but how will the program handle a one-character word in

a font big enough to be bigger than the displayable area

■ because the margins are too wide, so space for text

is narrow and

■ headers and footers are too tall, so space for text is

short.

Consequences, Consequences

If you don’t ask,

as part of a

combination test,

what are the special

risks posed by that

particular

combination, what are

you really testing?

490Copyright © 2020 AltomLecture 6 - Multivariable Testing

● All-pairs is useful for checking for relationships among variables

that aren’t supposed to be related (like printers and video cards).

● But how much testing time do you want to spend confirming

that:

○ things that aren’t supposed to be related aren't related?

● Don't you also want to test:

○ the things that are supposed to be related, to see

○ whether the relationship is implemented correctly, or

○ whether your model of the relationship is correct?

Independent Versus Non-Independent

Jorgensen argues that combinatorial

approaches like all-pairs have been

over-promoted and provide less value

than some people expect.

See Jorgensen, P. (2008, 3rd Ed.).

Software Testing: A Craftsman’s

Approach.

491Copyright © 2020 AltomLecture 6 - Multivariable Testing

What If They Aren’t Independent?

When the value of one variable constraints

another, corner cases like (10,10) probably aren’t

of much interest.

In this case, the border is the circle.

-10 ≤ X ≤ 10

-10 ≤ Y ≤ 10

X2 + Y2 ≤ 100

(0, 10)

(-10, 0) (10, 0)

(0, -10)

x (10, 10)

492Copyright © 2020 AltomLecture 6 - Multivariable Testing

Date field (Year – Month – Day)

● (2013 – 2 – 28) is a valid boundary

● (2013 – 2 – 29) is an invalid boundary

See Jorgensen, P. (2008, 3rd Ed.). Software Testing: A Craftsman’s Approach

Another Variable With Components That
Constrain Each Other: Date

You need a sampling

strategy—we can’t test

all possible dates (and

the consequences of

selecting each date)—

but simplistic testing

at the boundaries

won’t work.

28 days February not a leap year

29 days February leap year

30 days January, March, May, July, August, October, December

31 days April, June, September, November

493Copyright © 2020 AltomLecture 6 - Multivariable Testing

Back to the Open Office Table

Row height Column width Border Typeface Text size Rows Columns

1 S S N A F 1 1

2 S L W C T 1 75

3 S M M I W 75 1

4 L S W I F 75 75

5 L L M A T 75 1

6 L M N C W 1 75

7 M S M C T 75 1

8 M L N I W 1 1

9 M M W A F 75 75

10 S L M C F 1 75

11 L M N I T 75 1

12 M S W A W 1 1

494Copyright © 2020 AltomLecture 6 - Multivariable Testing

These Are Not Independent

● (75 rows, 75 columns) is impossible.

● You can have (1, 75) or (75, 1), but in

OpenOffice, rows * columns must yield

fewer than 255 cells.

● Here’s a graph of the possible values:

R ≤ 75

C ≤ 75

R * C ≤ 255

495Copyright © 2020 AltomLecture 6 - Multivariable Testing

More Non-Independence

● Border size, text size and column width all constrain each

other.

● You can often work around the assumption of independence

and still achieve "all pairs" by adding somewhat-redundant

tests.

● However, the more related the variables, the many more tests

you have to create.

496Copyright © 2020 AltomLecture 6 - Multivariable Testing

All-pairs combination testing doesn’t tell you:

● Which variables you should test together, and why

● Which values of these variables you should test, and why

● How you should deal with relationships among the variables

● What risks you should look for when testing these variables

together

● How you should determine whether the program passed or

failed the test

Open Questions

497Copyright © 2020 AltomLecture 6 - Multivariable Testing

Here is the OpenOffice page style dialog. All of these variables

interact in the layout of the page.

Interdependence of Several Variables

498Copyright © 2020 AltomLecture 6 - Multivariable Testing

Page Size and Margins

499Copyright © 2020 AltomLecture 6 - Multivariable Testing

Background Color or Graphics

500Copyright © 2020 AltomLecture 6 - Multivariable Testing

Background Graphics Are
Constrained by Page Dimensions

501Copyright © 2020 AltomLecture 6 - Multivariable Testing

Can You List the Relevant Variables?

502Copyright © 2020 AltomLecture 6 - Multivariable Testing

How do borders interact with background graphics? Hmmm...

How Many Variables Are on This Page?

503Copyright © 2020 AltomLecture 6 - Multivariable Testing

The Number of Variables on This Page
Depends on How Many Columns You Choose

504Copyright © 2020 AltomLecture 6 - Multivariable Testing

I don’t know how to do all pairs on a dialog like this.

Last Panel

505Copyright © 2020 AltomLecture 6 - Multivariable Testing

Try a variable relationship tour to identify and characterize

relationships.

For each variable:

● Trace its flow through the system

● What other data items does it interact with?

● What functions use it?

● Look for inconvenient values for other data items or for the

functions, look for ways to interfere with the function using

this data item

Exploring Related Variables

506Copyright © 2020 AltomLecture 6 - Multivariable Testing

Variable Relationships Table

Field Entry Source Display Print or Save Related
Variable Relationships

Variable 1
Every way you

can change
values in V1

Every way
you can

display V1

Every way you
can print,

transfer or
store V1

Variable 2
V1 < V2

(Constraint to
a range)

Variable 2
Every way you

can change
values in V2

Variable 1
V2 > V1

(Constraint to
a range)

507Copyright © 2020 AltomLecture 6 - Multivariable Testing

Two variables, V1 and V2

V1 = f(V2)

or V1 = f(V2, V3, V4, ...)

or V1 is constrained by V2

Constraint examples:

● V1 < V2+K

● V1 is an enumerated variable. The set of choices for V1 is

determined by the value of V2.

Relations are often reciprocal, so if V2 constraints V1, then V1 might

constrain V2 (try to change V2 after setting V1).

Multivariable Relationships

508Copyright © 2020 AltomLecture 6 - Multivariable Testing

Given the relationship,

● try to enter relationship-breaking values everywhere that you can enter V1 and

V2

● pay attention to unusual entry options, such as editing in a display field, import,

revision using a different component or program

Once you achieve a mismatch between V1 and V2, the program's data no longer obey

rules the programmer expected would be obeyed, so anything that assumes the rules

hold is vulnerable.

Do follow-up testing to discover serious side effects of the mismatch.

Multivariable Relationships

509Copyright © 2020 AltomLecture 6 - Multivariable Testing

If you can break a constraint, exploit it.

If you can get the program to accept

V1 = 100 and V2 = 20

Try displaying, printing or saving these values or using them in some other way.

Follow-on failures can be more persuasive than a "mere" constraint violation.

Variable Relationships

Field Entry Source Display Print or Save Related
Variable Relationships

Variable 1
Every way you

can change
values in V1

Every way
you can

display V1

Every way you
can print,

transfer or
store V1

Variable 2
V1 < V2

(Constraint to
a range)

Variable 2
Every way you

can change
values in V2

Variable 1
V2 > V1

(Constraint to
a range)

510Copyright © 2020 AltomLecture 6 - Multivariable Testing

● Mechanical (or procedural). The tester uses a routine

procedure to determine a good set of tests

● Risk-based. The tester combines test values (the values of

each variable) based on perceived risks associated with

noteworthy combinations

● Scenario-based. The tester combines test values on the basis

of interesting stories created for the combinations

Approaches to Combination Testing

511Copyright © 2020 AltomLecture 6 - Multivariable Testing

Combination test design is mechanical if you can follow an algorithm

(or a detailed procedure) to generate the tests

● Combinatorial testing, such as all-singles and all-pairs

● Random (use a random number generator) selection of

combinations

● High-volume sampling driven by algorithms developed from a

variety of research programs

Mechanical Combinations

The selection of the

test conditions (the

variables and their

values) can be done

mechanically, but you

often need human

judgment to decide

what tests and oracles

are of interest.

512Copyright © 2020 AltomLecture 6 - Multivariable Testing

● Risk-based combinations are suggested by such factors as:

○ History of failures in the field

○ Reports of combinations that have been difficult for

other products

○ Combinations that are common in the marketplace

○ Expectation of specific classes of problem, such as

memory overflow

● See the Multivariable Relationships discussion in the

Risk-Based Testing lecture.

Risk-Based Combination

513Copyright © 2020 AltomLecture 6 - Multivariable Testing

● Here you provide a meaningful combination based on the

benefits that an experienced user would expect from a

program of this type.

● This is a scenario-based combination.

● You are less likely to achieve a level of coverage like “all pairs”

with scenario-based combination testing

● We are more likely to use a suite of scenario tests to

thoroughly explore something (like a type of benefit expected

by the customer) tied to the value of the product.

Scenario-Based Combination

514Copyright © 2020 AltomLecture 6 - Multivariable Testing

We focused on mechanical combination testing, especially all-singles

and all-pairs.

● Provide an intuitively appealing coverage model

● Efficient for some important tasks

● Appeal to the mathematically inclined

However, these approaches

● Don’t provide test design guidance beyond selection of the

values of the variables you are specifically studying

● Are not very risk focused and not very focused on real-life uses

or motivating uses of the product.

Review of Lecture 6

515Copyright © 2020 AltomReferences List

The rest of the slides list references. This set is not exhaustive. We are trying to include:

● All the sources that we specifically relied on in creating this course's slides

● For the techniques this course emphasizes, (function testing; testing tours; risk-based testing;

scenario testing; specification analysis; domain testing; combinatorial testing), a sample of

sources we learned from.

● Suggestions readings. When you come back to these slides later, thinking about applying one

of the techniques we mentioned, look at the readings we suggest for that technique. We think

these are good starting points for learning about the technique.

References

516Copyright © 2020 AltomReferences List

Active reading (see also Specification-based testing and Concept mapping)

● Adler, M. (1940). “How to mark a book” http://academics.keene.edu/tmendham/documents/AdlerMortimerHowToMarkABook_20060802.pdf

● Adler, M., & Van Doren, C. (1972). How to Read a Book. Touchstone.

● Beacon Learning Center. (Undated). “Just Read Now” http://www.readingeducator.com/strategies/active.htm

● Active reading (summarizing Bean, J. Engaging Ideas). (Undated). http://titan.iwu.edu/~writcent/Active_Reading.htm

● Dubas J. M., Toledo S. A. (2015). “Active Reading Documents (ARDs): A Tool to Facilitate Meaningful Learning Through Reading”,

https://www.academia.edu/11309136/Active_Reading_Documents_ARDs_A_Tool_to_Facilitate_Meaningful_Learning_Through_Reading

● Gause, D.C., & Weinberg, G.M. (1989). Exploring Requirements: Quality Before Design. Dorset House.

● Hurley, W.D. (1989). A Generative Taxonomy of Application Domains Based on Interaction Semantics. Ph.D. Dissertation, George Washington

University. http://dl.acm.org/citation.cfm?id=75960 (on generative taxonomies)

● PLAN: Predict/Locate/Add/Note. (Undated). http://www.readingeducator.com/strategies/plan.htm

● MindTools. (Undated). Essential skills for an excellent career. http://www.mindtools.com

● Penn State University Learning Centers. (Undated). Active Reading. http://tutorials.istudy.psu.edu/activereading/

● Weill, P. (Undated). Reading Strategies for Content Areas: Part 1 After Reading
https://msbinstructionalcoach.files.wordpress.com/2012/02/before-part1.pdf

References

http://academics.keene.edu/tmendham/documents/AdlerMortimerHowToMarkABook_20060802.pdf
http://www.readingeducator.com/strategies/active.htm
http://titan.iwu.edu/~writcent/Active_Reading.htm
https://www.academia.edu/11309136/Active_Reading_Documents_ARDs_A_Tool_to_Facilitate_Meaningful_Learning_Through_Reading
http://dl.acm.org/citation.cfm?id=75960
http://www.readingeducator.com/strategies/plan.htm
http://www.mindtools.com
http://tutorials.istudy.psu.edu/activereading/
https://msbinstructionalcoach.files.wordpress.com/2012/02/before-part1.pdf

517Copyright © 2020 AltomReferences List

All-pairs testing

● See http://www.pairwise.org for more references generally and http://www.pairwise.org/tools.asp for a list of tools.

● Bach, J., & Schroeder, P. (2004). “Pairwise Testing: A Best Practice that Isn’t”. Proceedings of the 22nd Pacific Northwest Software Quality

Conference, 180–196. https://www.satisfice.com/download/pairwise-testing-a-best-practice-that-isnt. For Bach's tool, see

http://www.satisfice.com/tools/pairs.zip

● Bolton, M. (2007). “Pairwise testing”. http://www.developsense.com/pairwiseTesting.html

● Chateauneuf, M. (2000). “Covering Arrays”. Ph.D. Dissertation (Mathematics). Michigan Technological University.

● Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). “The AETG system: An approach to testing based on combinatorial

design”. IEEE Transactions on Software Engineering, 23(7).

https://www.academia.edu/8443357/The_AETG_system_An_approach_to_testing_based_on_combinatorial_design

● Czerwonka, J. (2008). “Pairwise testing in the real world: Practical extensions to test-case scenarios”.

http://www.pairwise.org/docs/pnsqc2006/PNSQC%20140%20-%20Jacek%20Czerwonka%20-%20Pairwise%20Testing%20-%20BW.pdf

● Microsoft’s PICT tool is at http://download.microsoft.com/download/f/5/5/f55484df-8494-48fa-8dbd-8c6f76cc014b/pict33.msi

● Jorgensen, P. (2008, 3rd Ed.). Software Testing: A Craftsman’s Approach. Auerbach Publications.

References

http://www.pairwise.org/
http://www.pairwise.org/tools.asp
https://www.satisfice.com/download/pairwise-testing-a-best-practice-that-isnt
http://www.satisfice.com/tools/pairs.zip
http://www.developsense.com/pairwiseTesting.html
https://www.academia.edu/8443357/The_AETG_system_An_approach_to_testing_based_on_combinatorial_design
http://www.pairwise.org/docs/pnsqc2006/PNSQC%20140%20-%20Jacek%20Czerwonka%20-%20Pairwise%20Testing%20-%20BW.pdf
http://download.microsoft.com/download/f/5/5/f55484df-8494-48fa-8dbd-8c6f76cc014b/pict33.msi

518Copyright © 2020 AltomReferences List

All-pairs testing (continued)

● Kuhn, D. R. & Okun, V. (2006). “Pseudo-exhaustive testing for software”. 30th Annual IEEE/NASA Software Engineering Workshop.

https://ieeexplore.ieee.org/document/4090256

● Zimmerer, P. (2004). “Combinatorial testing experiences, tools, and solutions”. International Conference on Software Testing, Analysis &

Review (STAR West). https://www.stickyminds.com/presentation/combinatorial-testing-experiences-tools-and-solutions

 Alpha testing

● See references on tests by programmers of their own code, or on relatively early testing by development groups. For a good overview

from the viewpoint of the test group, see Schultz, C.P., Bryant, R., & Langdell, T. (2005). Game Testing All in One. Thomson Press

Ambiguity analysis (See also specification-based testing)

● Bender, R. (Undated). “The Ambiguity Review Process”, http://benderrbt.com/Ambiguityprocess.pdf

● Berry, D.M., Kamisties, E., & Krieger, M.M. (2003) “From contract drafting to software specification: Linguistic sources of ambiguity”.

http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

● Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2000) Quality evaluation of software requirements specifications. Thirteenth International

Software & Internet .Quality Week. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.4333&rep=rep1&type=pdf

References

https://ieeexplore.ieee.org/document/4090256
https://www.stickyminds.com/presentation/combinatorial-testing-experiences-tools-and-solutions
http://benderrbt.com/Ambiguityprocess.pdf
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.4333&rep=rep1&type=pdf

519Copyright © 2020 AltomReferences List

Ambiguity analysis (See also specification-based testing) (continued)

● Spector, C.C. (1997) Saying One Thing, Meaning Another, Eau Claire, WI: Thinking Publications (reprint at

www.superduperinc.com/products/view.aspx?pid=tpx12901)

● Spector, C.C. (2001). As Far As Words Go: Activities for Understanding Ambiguous Language and Humor, Baltimore: Brookes Publishing.

Best representative testing (See domain testing)

Beta testing

● Bolton, M. (2001). “Effective beta testing”. http://www.developsense.com/EffectiveBetaTesting.html

● Fine, M.R. (2002). Beta Testing for Better Software. Wiley.

● Schultz, C.P., Bryant, R., & Langdell, T. (2005). Game Testing All in One. Thomson Press.

● Spolsky, J. (2004). “Top twelve tips for running a beta test”. http://www.joelonsoftware.com/articles/BetaTest.html

Boundary testing (See domain testing)

References

http://www.superduperinc.com/products/view.aspx?pid=tpx12901
http://www.developsense.com/EffectiveBetaTesting.html
http://www.joelonsoftware.com/articles/BetaTest.html

520Copyright © 2020 AltomReferences List

Bug bashes

● Berkun, S. (2008). “How to run a bug bash”. http://www.scottberkun.com/blog/2008/how-to-run-a-bug-bash/

● Powell, C. (2009). “Bug bash”. http://blog.abakas.com/2009/01/bug-bash.html

Build verification

● Guckenheimer, S. & Perez, J. (2006). Software Engineering with Microsoft Visual Studio Team System. Addison Wesley.

● Page, A., Johnston, K., & Rollison, B.J. (2009). How We Test Software at Microsoft. Microsoft Press.

● Raj, S. (2009). “Maximize your investment in automation tools”. Software Testing Analysis & Review.

https://www.stickyminds.com/sites/default/files/presentation/file/2013/09STRWR_T13.pdf

Calculations

Note: There is a significant, relevant field: Numerical Analysis. The list here merely points you to a few sources I have personally found

helpful, not necessarily to the top references in the field.

● Arsham, H. (2010) “Solving system of linear equations with application to matrix inversion”

http://home.ubalt.edu/ntsbarsh/business-stat/otherapplets/SysEq.htm

References

http://www.scottberkun.com/blog/2008/how-to-run-a-bug-bash/
http://blog.abakas.com/2009/01/bug-bash.html
https://www.stickyminds.com/sites/default/files/presentation/file/2013/09STRWR_T13.pdf
http://home.ubalt.edu/ntsbarsh/business-stat/otherapplets/SysEq.htm

521Copyright © 2020 AltomReferences List

Calculations (continued)

● Boisvert, R.F., Pozo, R., Remington, K., Barrett , R.F., & Dongarra, J.J. (1997) Matrix Market: A web resource for test matrix collections. In

Boisvert, R.F. (1997) (Ed.) Quality of Numerical Software: Assessment and Enhancement. Chapman & Hall.

● Einarsson, B. (2005). Accuracy and Reliability in Scientific Computing. Society for Industrial and Applied Mathematics (SIAM).

● Gregory, R.T. & Karney, D.L. (1969). A Collection of Matrices for Testing Computational Algorithms. Wiley.

● Kaw, A.K. (2008), Introduction to Matrix Algebra. Available from

http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/LinearAlgebra/Web/matrixalgebra.pdf Chapter 9, Adequacy of Solutions.

Combinatorial testing. See All-Pairs Testing

Concept mapping

● Hyerle, D.N. (2008, 2nd Ed.). Visual Tools for Transforming Information into Knowledge, Corwin.

● Margulies, N., & Maal, N. (2001, 2nd Ed.) Mapping Inner Space: Learning and Teaching Visual Mapping. Corwin.

● McMillan, D. (2010). “Tales from the trenches: Lean test case design”. http://www.bettertesting.co.uk/content/?p=253

● McMillan, D. (2011). “Mind Mapping 101”. http://www.bettertesting.co.uk/content/?p=956

References

http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/LinearAlgebra/Web/matrixalgebra.pdf
http://www.bettertesting.co.uk/content/?p=253
http://www.bettertesting.co.uk/content/?p=956

522Copyright © 2020 AltomReferences List

Concept mapping (continued)

● Moon, B.M., Hoffman, R.R., Novak, J.D., & Canas, A.J. (Eds., 2011). Applied Concept Mapping: Capturing, Analyzing, and Organizing Knowledge.

CRC Press.

● Nast, J. (2006). Idea Mapping: How to Access Your Hidden Brain Power, Learn Faster, Remember More, and Achieve Success in Business. Wiley.

● Sabourin, R. (2006). X marks the test case: Using mind maps for software design. Better Software.

www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&id=90

Concept mapping tools

● For a very useful list of tools, see Wikipedia. http://en.wikipedia.org/wiki/Concept_mapping_program

● http://www.mindtools.com/mindmaps.html

● Kharbach, M. (2018). “9 Great Concept Mapping Tools for Teachers and Students”

https://www.educatorstechnology.com/2018/01/9-great-concept-mapping-tools-for.html

● FreeMind: http://freemind.sourceforge.net/wiki/index.php/Main_Page

● MindMup: https://www.mindmup.com

● XMind: http://www.xmind.net

References

http://www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&id=90
http://en.wikipedia.org/wiki/Concept_mapping_program
http://www.mindtools.com/mindmaps.html
https://www.educatorstechnology.com/2018/01/9-great-concept-mapping-tools-for.html
http://freemind.sourceforge.net/wiki/index.php/Main_Page
https://www.mindmup.com/
http://www.xmind.net

523Copyright © 2020 AltomReferences List

Concept mapping tools (continued)

● NovaMind: http://www.novamind.com

● MindManager: http://www.mindjet.com

Configuration coverage

● Black, R. (2002, 2nd Ed.). Managing the Testing Process. Wiley.

● Kaner, C. (1996). “Software negligence and testing coverage”. Software Testing, Analysis & Review Conference (STAR).

http://www.kaner.com/pdfs/negligence_and_testing_coverage.pdf

● Pawson, M. (2001). “The Test Matrix: How to Keep a Complex Test Project on Track”.

https://www.stickyminds.com/better-software-magazine/test-matrix-how-keep-complex-test-project-track

Configuration/compatibility testing

● Kaner, C., Falk, J., & Nguyen, H.Q. (2nd Edition, 2000). Testing Computer Software. Wiley.

● McCaffrey, J., & Despe, P. (2008). “Configuration testing with virtual server”, part 2. MSDN Magazine. December.

https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/december/test-run-configuration-testing-with-virtual-server-part-2

● Patton, Ron. (2006, 2nd Ed.). Software Testing. SAMS.

References

http://www.novamind.com
http://www.mindjet.com
http://www.kaner.com/pdfs/negligence_and_testing_coverage.pdf
https://www.stickyminds.com/better-software-magazine/test-matrix-how-keep-complex-test-project-track
https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/december/test-run-configuration-testing-with-virtual-server-part-2

524Copyright © 2020 AltomReferences List

Constraint checks

● See our notes in BBST Foundation's presentation of Hoffman's collection of oracles.

● Hoffman, D. (1999). “Heuristic test oracles”. Software Testing & Quality Engineering, 1(2), 29-32.

https://www.stickyminds.com/better-software-magazine/heuristic-test-oracles

Constraints

● Jorgensen, A.A. (1999). Software Design Based on Operational Modes. Doctoral Dissertation, Florida Institute of Technology.

https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf

● Whittaker, J.A. (2002) How to Break Software, Addison Wesley.

Diagnostics-based testing

● Al-Yami, A.M. (1996). Fault-Oriented Automated Test Data Generation. Ph.D. Dissertation, Illinois Institute of Technology.

● Kaner, C., Bond, W.P., & McGee, P.(2004). “High volume test automation”. Keynote address: International Conference on Software Testing

Analysis & Review (STAR East 2004). Orlando. http://www.kaner.com/pdfs/HVAT_STAR.pdf (The Telenova and Mentsville cases are both

examples of diagnostics-based testing.)

References

https://www.stickyminds.com/better-software-magazine/heuristic-test-oracles
https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf
http://www.kaner.com/pdfs/HVAT_STAR.pdf

525Copyright © 2020 AltomReferences List

Domain testing

● Abramowitz & Stegun (1964), “Handbook of Mathematical Functions”. http://people.math.sfu.ca/~cbm/aands/frameindex.htm

● Beizer, B. (1990). Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold.

● Beizer, B. (1995). Black-Box Testing. Wiley.

● Binder, R. (2000). Testing Object-Oriented Systems. Addison-Wesley.

● Black, R. (2009). “Using domain analysis for testing. Quality Matters”, Q3, 16-20.

http://www.rbcs-us.com/images/documents/quality-matters-q3-2009-rb-article.pdf

● Clarke, L.A. (1976). A system to generate test data and symbolically execute programs. IEEE Transactions on Software Engineering, 2, 208-215.

● Clarke, L. A. Hassel, J., & Richardson, D. J. (1982). A close look at domain testing. IEEE Transactions on Software Engineering, 2, 380-390.

● Copeland, L. (2004). A Practitioner’s Guide to Software Test Design. Artech House.

● Craig, R. D., & Jaskiel, S. P. (2002). Systematic Software Testing. Artech House.

● Hamlet, D. & Taylor, R. (1990). Partition testing does not inspire confidence. IEEE Transactions on Software Engineering, 16(12), 1402-1411.

● Hayes, J.H. (1999). Input Validation Testing: A System-Level, Early Lifecycle Technique. Ph.D. Dissertation (Computer Science), George Mason

University.

References

http://people.math.sfu.ca/~cbm/aands/frameindex.htm
http://www.rbcs-us.com/images/documents/quality-matters-q3-2009-rb-article.pdf

526Copyright © 2020 AltomReferences List

Domain testing (continued)

● Howden, W. E. (1980). Functional testing and design abstractions. Journal of Systems & Software, 1, 307-313.

● Jeng, B. & Weyuker, E.J. (1994). A simplified domain-testing strategy. ACM Transactions on Software Engineering, 3(3), 254-270.

● Jorgensen, P. C. (2008). Software Testing: A Craftsman’s Approach (3rd ed.). Taylor & Francis.

● Kaner, C. (2004a). “Teaching domain testing: A status report.” Paper presented at the Conference on Software Engineering Education &

Training. http://www.kaner.com/pdfs/teaching_sw_testing.pdf

● Kaner, C., Padmanabhan, S., & Hoffman, D. (2013) Domain Testing: A Workbook. Context Driven Press.

● Myers, G. J. (1979). The Art of Software Testing. Wiley.

● Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying and generating functional tests. Communications of the

ACM, 31(6), 676-686.

● Padmanabhan, S. (2004). Domain Testing: Divide and Conquer. M.Sc. Thesis, Florida Institute of Technology.

http://www.testingeducation.org/a/DTD&C.pdf

● Schroeder, P.J. (2001). Black-box test reduction using input-output analysis. Ph.D. Dissertation (Computer Science). Illinois Institute of

Technology.

References

http://www.kaner.com/pdfs/teaching_sw_testing.pdf
http://www.testingeducation.org/a/DTD&C.pdf

527Copyright © 2020 AltomReferences List

Domain testing (continued)

● Weyuker, E.J., & Ostrand, T.J. (1980). Theories of program testing and the application of revealing subdomains. IEEE Transactions on Software

Engineering, 6(3), 236-245.

● Weyuker, E. J., & Jeng, B. (1991). Analyzing partition testing strategies. IEEE Transactions on Software Engineering, 17(7), 703-711.

● White, L. J., Cohen, E.I., & Zeil, S.J. (1981). A domain strategy for computer program testing. In Chandrasekaran, B., & Radicchi, S. (Ed.),

Computer Program Testing (pp. 103-112). North Holland Publishing.

● http://www.wikipedia.org/wiki/Stratified_sampling

Dumb monkey testing

● Arnold, T. (1998), Visual Test 6. Wiley.

● Nyman, N. (2000), “Using monkey test tools”. Software Testing & Quality Engineering, 2(1), 18-20

https://www.stickyminds.com/better-software-magazine/using-monkey-test-tools

Eating your own dog food

● Page, A., Johnston, K., & Rollison, B.J. (2009). How We Test Software at Microsoft. Microsoft Press.

References

http://www.wikipedia.org/wiki/Stratified_sampling
https://www.stickyminds.com/better-software-magazine/using-monkey-test-tools

528Copyright © 2020 AltomReferences List

Equivalence class analysis (see Domain testing)

Experimental design

● Popper, K.R. (2002, 2nd Ed.). Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge.

● Shadish, W.R., Cook, T.D., & Campbell, D.T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference, 2nd Ed.

Wadsworth.

Exploratory testing

● Bach, J. (1999). “General functionality and stability test procedure”. http://www.satisfice.com/tools/procedure.pdf

● Bach, J. (2000). “Session-based test management”. Software Testing & Quality Engineering. http://www.satisfice.com/articles/sbtm.pdf

● Bach, J. (2003). “Exploratory testing explained”. http://satisfice.us/articles/et-article.pdf

● Bach, J., Bach, J. & Bolton, M. (2009). “Exploratory testing dynamics”. (v 4.0). https://www.developsense.com/resources/TestingSkillsv4.pdf

● Bolton, M. (2011). “Evolving Understanding of Exploratory Testing”. http://www.developsense.com/resources.html#exploratory

● Cox, R., Duisters, P. & van der Laar, J. (2011). “Testing in the medical domain”. Testing Experience (March), 6-8.

https://bbst.courses/wp-content/uploads/2021/01/testingexperience13_03_11_cox_duisters_laar.pdf

● Hendrickson, E. (2011). “Exploratory Testing in an Agile Context”. https://less.works/papers/et.pdf

References

http://www.satisfice.com/tools/procedure.pdf
http://www.satisfice.com/articles/sbtm.pdf
http://satisfice.us/articles/et-article.pdf
https://www.developsense.com/resources/TestingSkillsv4.pdf
http://www.developsense.com/resources.html#exploratory
https://bbst.courses/wp-content/uploads/2021/01/testingexperience13_03_11_cox_duisters_laar.pdf
https://less.works/papers/et.pdf

529Copyright © 2020 AltomReferences List

Exploratory testing (continued)

● Kaner, C. (2006). “Exploratory testing after 23 years”. Conference of the Association for Software Testing.

http://www.kaner.com/pdfs/ETat23.pdf

● Kaner, C. & Hoffman, D. (2010). “Introduction to exploratory test automation”. http://kaner.com/pdfs/VISTACONexploratoryTestAutmation.pdf

● Kohl, J. (2007). “Getting started with exploratory testing --Parts 1. http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-1/

● Kohl, J. (2007). “Getting started with exploratory testing --Part 2”. http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-2/

● Kohl, J. (2007). “Getting started with exploratory testing --Part 3”. http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-3/

● Kohl, J. (2007). “Getting started with exploratory testing --Part 4”. http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-4/

● Kohl, J. (2007). “Man and machine: Combining the power of the human mind with automation tools”. Better Software, December, 20-25.

http://www.kohl.ca/articles/ManandMachine_BetterSoftware_Dec2007.pdf

● Kohl, J. (2011). “Documenting exploratory testing”. Better Software, May/June, 22-25.

https://www.stickyminds.com/better-software-magazine/documenting-exploratory-testing

● Robinson H. (2010). Exploratory test automation. Conference of the Association for Software Testing.

http://www.harryrobinson.net/ExploratoryTestAutomation-CAST.pdf

● Ryber,. T. (2007). Essential Software Test Design. Fearless Consulting.

References

http://www.kaner.com/pdfs/ETat23.pdf
http://kaner.com/pdfs/VISTACONexploratoryTestAutmation.pdf
http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-1/
http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-2/
http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-3/
http://www.kohl.ca/2007/getting-started-with-exploratory-testing-part-4/
http://www.kohl.ca/articles/ManandMachine_BetterSoftware_Dec2007.pdf
https://www.stickyminds.com/better-software-magazine/documenting-exploratory-testing
http://www.harryrobinson.net/ExploratoryTestAutomation-CAST.pdf

530Copyright © 2020 AltomReferences List

Failure mode analysis: see also Guidewords and Risk-Based Testing.

● Cheit, R.E. (1990). “Setting Safety Standards: Regulation in the Public and Private Sectors”. University of California Press.

http://ark.cdlib.org/ark:/13030/ft8f59p27j/

● Department of Defense (1980). “Procedures for Performing a Failure Mode, Effects and Criticality Analysis: MIL-STD-1629A”.

https://elsmar.com/pdf_files/Military%20Standards/mil-std-1629.pdf

● Department of Defense Patient Safety Center (2004). “Failure mode and effects analysis (FMEA): An advisor's guide”. AF Patient Safety

Program. http://docplayer.net/16235308-An-advisor-s-guide-version-1-0-june-2004.html

● FMEA-FMECA.COM (undated). FMEA Examples. http://fmea-fmeca.com/fmea-examples.html

● Goddard, P.L. (2000). Software FMEA techniques. Proceedings of the Reliability and Maintainability Symposium, 118-123.

● Hurley, W.D. (1989). A Generative Taxonomy of Application Domains Based on Interaction Semantics. Ph.D. Dissertation, George Washington

University. http://dl.acm.org/citation.cfm?id=75960

● Jha, A. (2007). “A Risk Catalog for Mobile Applications”. (Master's Thesis in Software Engineering) Department of Computer Sciences at

Florida Institute of Technology. http://www.testingeducation.org/articles/AjayJha_Thesis.pdf

● Kaner, C., Falk, J., & Nguyen, H.Q. (2nd Edition, 2000b). Bug Taxonomy (Appendix) in Testing Computer Software. Wiley.

http://www.testingeducation.org/BBST/testdesign/Kaner_Common_Software_Errors.pdf

References

http://ark.cdlib.org/ark:/13030/ft8f59p27j/
https://elsmar.com/pdf_files/Military%20Standards/mil-std-1629.pdf
http://docplayer.net/16235308-An-advisor-s-guide-version-1-0-june-2004.html
http://fmea-fmeca.com/fmea-examples.html
http://dl.acm.org/citation.cfm?id=75960
http://www.testingeducation.org/articles/AjayJha_Thesis.pdf
http://www.testingeducation.org/BBST/testdesign/Kaner_Common_Software_Errors.pdf

531Copyright © 2020 AltomReferences List

Failure mode analysis: see also Guidewords and Risk-Based Testing (continued)

● Pentti, H. & Atte, H. (2002). Failure mode and effects analysis of software-based automation systems.

● Vijayaraghavan, G. (2002). A Taxonomy of E-Commerce Risks and Failures. (Master's Thesis) Department of Computer Sciences at Florida

Institute of Technology. http://www.testingeducation.org/a/tecrf.pdf

● Vijayaraghavan, G., & Kaner, C. (2002). “Bugs in your shopping cart: A taxonomy”. 15th International Software Quality Conference (Quality

Week). San Francisco, CA. (Best Paper Award.) http://www.testingeducation.org/a/bsct.pdf

● Vijayaraghavan, G., & Kaner, C.(2003). “Bug taxonomies: Use them to generate better tests”. Software Testing, Analysis & Review

Conference (Star East). Orlando, FL. (Best Paper Award). http://www.testingeducation.org/a/bugtax.pdf

Feature integration testing

● Overbaugh, J. (2007). “How to do integration testing”. http://searchsoftwarequality.techtarget.com/answer/How-to-do-integration-testing

● Van Tongeren, T. (2001). “Functional integration test planning”.

https://www.cmcrossroads.com/sites/default/files/article/file/2013/XUS2004669file1_0.pdf

References

http://www.testingeducation.org/a/tecrf.pdf
http://www.testingeducation.org/a/bsct.pdf
http://www.testingeducation.org/a/bugtax.pdf
http://searchsoftwarequality.techtarget.com/answer/How-to-do-integration-testing
https://www.cmcrossroads.com/sites/default/files/article/file/2013/XUS2004669file1_0.pdf

532Copyright © 2020 AltomReferences List

Function testing

● Bolton, M. (2006). “The factors of function testing”. Better Software.

http://www.developsense.com/articles/2006-07-TheFactorsOfFunctionTesting.pdf

● Craig, R.D., & Jaskiel, S.P. (2002). Systematic Software Testing. See Chapter 5, Test Design (the discussion of inventories). Artech House.

Function equivalence testing

● Hoffman, D. (2003). Exhausting your test options. Software Testing & Quality Engineering, 5(4), 10-11

● Kaner, C., Falk, J., & Nguyen, H.Q. (2nd Edition, 2000). Testing Computer Software. Wiley.

Functional testing below the GUI

● Marick, B. (2002). “Bypassing the GUI”. Software Testing & Quality Engineering, Sept/Oct. 41-47.

http://www.exampler.com/testing-com/writings/bypassing-the-gui.pdf

Guerilla testing

● Kaner, C., Falk, J., & Nguyen, H.Q. (2nd Edition, 2000). Testing Computer Software. Wiley.

References

http://www.developsense.com/articles/2006-07-TheFactorsOfFunctionTesting.pdf
http://www.exampler.com/testing-com/writings/bypassing-the-gui.pdf

533Copyright © 2020 AltomReferences List

Guidewords

● Bach, J. (2019). “Heuristic test strategy model”, Version 5.7.5. https://www.satisfice.com/download/heuristic-test-strategy-model

● Broomfield, E.J. & Chung, P.W.H. (1994). Hazard identification in programmable systems: A methodology and case study. ACM SIGAPP Applied

Computing Review, 2(1), 7-14.

● Falla, M. (Ed.) (1997). Advances in Safety Critical Systems: Results and Achievements from the DTI/EPSRC R&D Programme in Safety Critical

Systems. Chapter 3: Hazard Analysis.

● Fenelon, P. & Hebbron, B. (1994). “Applying HAZOP to software engineering models. Risk Management and Critical Protective Systems:

Proceedings of SARSS 1994”. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.6073&rep=rep1&type=pdf

● Fenelon, P., McDermid, J.A., Nicholson, M. & Pumfrey, D.J. (1994). “Towards integrated safety analysis and design. ACM SIGAPP Applied

Computing Review”, 2(1), 21-32. http://www-users.cs.york.ac.uk/~djp/publications/djp-acm.pdf

● Fields, R. Paterno, F., Santoro, C. & Tahmassebi, S. (1999). Comparing design options for allocating communication media in cooperative

safety-critical contexts: A method and a case study. ACM Transactions on Computer-Human Interaction, 6(4), 370–398.

● HAZOP Guidelines (2011). “Hazardous Industry Planning Advisory Paper No. 8”, NSW Government Department of Planning.

https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf

References

https://www.satisfice.com/download/heuristic-test-strategy-model
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.6073&rep=rep1&type=pdf
http://www-users.cs.york.ac.uk/~djp/publications/djp-acm.pdf
https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf

534Copyright © 2020 AltomReferences List

Guidewords (continued)

● Hewitt, R. (2005). Information-based risk assessment software architecture. Proceedings of the 2005 IEEE Engineering Management

Conference, 574-578.

● Lutz, R. & Nikora, A. (2005, November). “Failure Assessment. 1st Int'l Forum on Integrated System Health Engineering and Management for

Aerospace” (ISHEM'05). http://www.cs.iastate.edu/~rlutz/publications/ishem05.pdf

● Reinhardt, D. (2006). “Certification criteria for emulation technology in the Australian Defence Force Military Avionics Context. 11th

Australian Workshop on Safety Related Programmable Systems (SCS’06)”. Conferences in Research and Practice in Information Technology.

69, 79-92. https://dl.acm.org/doi/pdf/10.5555/1274236.1274246

● Stone, G.R. (2005). “On arguing the safety of large systems”. 10th Australian Workshop on Safety related Programmable Systems.

Conferences in Research and Practice in Information Technology, 55, 69-75. https://dl.acm.org/doi/pdf/10.5555/1151816.1151823

● Ye, F. & Kelly, T. (1994). “Contract-based justification for COTS component within safety-critical applications”. 9th Australian Workshop on

Safety Related Programmable Systems (SCS' 04). Conferences in Research & Practice in Information Technology, 47, 13-22.

https://www-users.cs.york.ac.uk/tpk/ausscs04.pdf

References

http://www.cs.iastate.edu/~rlutz/publications/ishem05.pdf
https://dl.acm.org/doi/pdf/10.5555/1274236.1274246
https://dl.acm.org/doi/pdf/10.5555/1151816.1151823
https://www-users.cs.york.ac.uk/tpk/ausscs04.pdf

535Copyright © 2020 AltomReferences List

Installation testing

● Agruss, C. (2000). “Software installation testing: How to automate tests for smooth system installation”. Software Testing & Quality

Engineering, 2 (4). www.stickyminds.com/better-software-magazine/software-installation-testing-how-automate-tests-smooth-system-installation

● Bach, J. (1999), “Heuristic risk-based testing”, Software Testing & Quality Engineering, 1 (6), 22-29. http://www.satisfice.com/articles/hrbt.pdf

● Noggle, B.J. (2011). “Testing the installer”. The Testing Planet. March,

https://www.amazon.com/Testing-Planet-March-2011-Issue-ebook/dp/B004VWPFEY

● Shinde, V. (2007). “Software installation/uninstallation testing”. http://www.softwaretestinghelp.com/software-installationuninstallation-testing

Interoperability testing

● European Telecommunications Standards Institute (2011). “Generic approach to interoperability testing”

https://www.etsi.org/deliver/etsi_eg/202200_202299/202237/01.02.01_60/eg_202237v010201p.pdf

● Simulations Interoperability Standards Organization (2010). Commercial Off-the-Shelf (COTS) Simulation Package Interoperability (CSPI)

Reference Mode. http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30829

Load testing

● Asbock, S. (2000). Load Testing for eConfidence. Segue.

References

https://www.stickyminds.com/better-software-magazine/software-installation-testing-how-automate-tests-smooth-system-installation
http://www.satisfice.com/articles/hrbt.pdf
https://www.amazon.com/Testing-Planet-March-2011-Issue-ebook/dp/B004VWPFEY
http://www.softwaretestinghelp.com/software-installationuninstallation-testing
https://www.etsi.org/deliver/etsi_eg/202200_202299/202237/01.02.01_60/eg_202237v010201p.pdf
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30829

536Copyright © 2020 AltomReferences List

Load testing (continued)

● Barber, S. (2006). “Remember yesterday”. Software Test & Performance Magazine. January, 42-43.

http://www.perftestplus.com/resources/016PeakPerf.pdf

● Savoia, A. (2000). “The science and art of web site load testing”. International Conference on Software Testing Analysis & Review (STAR

East), Orlando. https://www.stickyminds.com/presentation/science-and-art-web-site-load-testing

● Savoia, A. (2001). Three web load testing blunders and how to avoid them. Software Testing & Quality Engineering, 3(3), 54-59.

http://www.stickyminds.com/s.asp?F=S5034_MAGAZINE_2

Localization testing

● Bolton, M. (2006, April). “Where in the world?” Better Software. http://www.developsense.com/articles/2006-04-WhereInTheWorld.pdf

● Chandler, H.M. & Deming, S.O (2nd Ed. in press). The Game Localization Handbook. Jones & Bartlett Learning.

● Ratzmann, M., & De Young, C. (2003). “Galileo Computing: Software Testing and Internationalization”. Lemoine International and the

Localization Industry Standards Association. http://www.automation.org.uk/downloads/documentation/galileo_computing-software_testing.pdf

● Savourel, Y. (2001). XML Internationalization and Localization. Sams Press.

● Singh, N. & Pereira, A. (2005). The Culturally Customized Web Site: Customizing Web Sites for the Global Marketplace. Butterworth-Heinemann.

References

http://www.perftestplus.com/resources/016PeakPerf.pdf
https://www.stickyminds.com/presentation/science-and-art-web-site-load-testing
http://www.stickyminds.com/s.asp?F=S5034_MAGAZINE_2
http://www.developsense.com/articles/2006-04-WhereInTheWorld.pdf
http://www.automation.org.uk/downloads/documentation/galileo_computing-software_testing.pdf

537Copyright © 2020 AltomReferences List

Localization testing (continued)

● Smith-Ferrier, G. (2006). .NET Internationalization: The Developer's Guide to Building Global Windows and Web Applications. Addison-Wesley

Professional.

● Uren, E., Howard, R. & Perinotti, T. (1993). Software Internationalization and Localization. Van Nostrand Reinhold.

Logical expression testing

● Amman, P., & Offutt, J. (2008). Introduction to Software Testing. Cambridge University Press.

● Beizer, B. (1990). Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold.

● Brian Marick (2000) modeled testing of logical expressions by considering common mistakes in designing/coding a series of related

decisions. Testing for Programmers. http://www.exampler.com/testing-com/writings/half-day-programmer.pdf

● Copeland, L. (2004). A Practitioner's Guide to Software Test Design. Artech House (see Chapter 5 on decision tables).

● Jorgensen, P. (2008, 3rd Ed.). Software Testing: A Craftsman’s Approach. Auerbach Publications (see Chapter 7 on decision tables).

● MULTI. Marick implemented his approach to testing logical expressions in a program, MULTI. Tim Coulter and his colleagues extended

MULTI and published it (with Marick's permission) at http://sourceforge.net/projects/multi/

References

http://www.exampler.com/testing-com/writings/half-day-programmer.pdf
http://sourceforge.net/projects/multi/

538Copyright © 2020 AltomReferences List

Long-sequence testing

● Claessen, K. (undated). “QuickCheck 2.4.0.1: Automatic testing of Haskell programs”.

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/QuickCheck

● International Symposium on Software Testing and Analysis. http://www.kaner.com/pdfs/MentsvillePM-CK.pdf

● Koopman, P. (undated). “The Ballista ® Project: COTS software robustness testing”. http://users.ece.cmu.edu/~koopman/ballista/

● McGee, P. & Kaner, C. (2004). “Experiments with high volume test automation.” Workshop on Empirical Research in Software Testing,

Mathematical oracle

● See our notes in BBST Foundation's presentation of Hoffman's collection of oracles.

● Abramowitz & Stegun (1964), “Handbook of Mathematical Functions”. http://people.math.sfu.ca/~cbm/aands/frameindex.htm

● Hoffman, D. (1999). “Heuristic test oracles”. Software Testing & Quality Engineering, 1(2), 29-32.

https://www.stickyminds.com/better-software-magazine/heuristic-test-oracles

Numerical analysis (see Calculations)

References

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/QuickCheck
http://www.kaner.com/pdfs/MentsvillePM-CK.pdf
http://users.ece.cmu.edu/~koopman/ballista/
http://people.math.sfu.ca/~cbm/aands/frameindex.htm
https://www.stickyminds.com/better-software-magazine/heuristic-test-oracles

539Copyright © 2020 AltomReferences List

Paired testing

● Crispin, L. (2017). “Pairing With Developers: A Guide for Testers”. Testing Planet, 2017,

https://www.ministryoftesting.com/dojo/lessons/pairing-with-developers-a-guide-for-testers

● Kaner, C. & Bach, J. (2001). “Exploratory testing in pairs”. Software Testing Analysis & Review (STAR West).

http://www.kaner.com/pdfs/exptest.pdf

● Kohl, J. (2004). “Pair testing: How I brought developers into the test lab”. Better Software, 6 (January), 14-16.

http://www.kohl.ca/articles/pairtesting.html

● Pyhäjärvi, M. (2020), “Social Software Testing Approaches” https://bbst.courses/blog/social-software-testing-approaches

Pairwise testing (see All-Pairs testing)

Programming or software design

● Roberts, E. (2005, 20th Ed.). Thinking Recursively with Java. Wiley.

Psychological considerations

● Bendor, J. (2005). The perfect is the enemy of the best: Adaptive versus optimal organizational reliability. Journal of Theoretical Politics. 17(1),

5-39.

References

http://www.softwaretestingclub.com/forum/topics/pair-testing
https://www.ministryoftesting.com/dojo/lessons/pairing-with-developers-a-guide-for-testers
http://www.kaner.com/pdfs/exptest.pdf
http://www.kohl.ca/articles/pairtesting.html
https://bbst.courses/blog/social-software-testing-approaches

540Copyright © 2020 AltomReferences List

Psychological considerations (continued)

● Rohlman, D.S. (1992). The Role of Problem Representation and Expertise in Hypothesis Testing: A Software Testing Analogue. Ph.D. Dissertation,

Bowling Green State University.

● Teasley, B.E., Leventhal, L.M., Mynatt, C.R., & Rohlman, D.S. (1994). Why software testing is sometimes ineffective: Two applied studies of

positive test strategy. Journal of Applied Psychology, 79(1), 142-155.

● Whittaker, J.A. (2000). What is software testing? And why is it so hard? IEEE Software, Jan-Feb. 70-79.

Quicktests

● Andrews, M., & Whittaker, J.A. (2006). How to Break Web Software, Addison Wesley.

● Hendrickson, E. (2006). “Test heuristics cheat sheet”. http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf

● Hunter, M. J. (2010). “You are not done yet”. http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

● Jorgensen, A.A. (2003). “Testing with hostile data streams”. ACM SIGSOFT Software Engineering Notes, 28(2).

http://cs.fit.edu/media/TechnicalReports/cs-2003-03.pdf

● Kaner, C. (1988). Testing Computer Software. McGraw-Hill.

(see Appendix: common software errors: http://www.testingeducation.org/BBST/testdesign/Kaner_Common_Software_Errors.pdf)

References

http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf
http://cs.fit.edu/media/TechnicalReports/cs-2003-03.pdf

541Copyright © 2020 AltomReferences List

Quicktests (continued)

● Kaner, C. & Johnson, B. (1999). Styles of exploration, 7th Los Altos Workshop on Software Testing.

http://www.kaner.com/pdfs/LAWST7StylesOfExploration.pdf

● Nguyen, H.Q., Johnson, B., & Hackett, M. (2003, 2nd ed). Testing Applications on the Web. Wiley.

● Whittaker, J.A. (2002). How to Break Software, Addison Wesley.

● Whittaker, J.A. & Thompson, H.H. (2004). How to Break Software Security. Addison Wesley.

Random testing

● Ciupa, I., Leitner, A., Oriol, M., & Meyer, B. (2007). “Experimental Assessment of Random Testing for Object-Oriented Software”.

International Symposium on Software Testing and Analysis.

https://www.academia.edu/9486772/Experimental_assessment_of_random_testing_for_object_oriented_software

● Hamlet, D. (2002) “Random testing”. Encyclopedia of Software Engineering. http://web.cecs.pdx.edu/~hamlet/random.pdf

● Hamlet, D. (2006). “When only random testing will do”. Proceedings of the 1st International Workshop on Random Testing.

http://web.cecs.pdx.edu/~hamlet/rt.pdf

● Robinson, H. (2004). “Things that find bugs in the night”. http://www.stickyminds.com/s.asp?F=S7331_COL_2

References

http://www.kaner.com/pdfs/LAWST7StylesOfExploration.pdf
https://www.academia.edu/9486772/Experimental_assessment_of_random_testing_for_object_oriented_software
http://web.cecs.pdx.edu/~hamlet/random.pdf
http://web.cecs.pdx.edu/~hamlet/rt.pdf
http://www.stickyminds.com/s.asp?F=S7331_COL_2

542Copyright © 2020 AltomReferences List

Regression testing

● Bach, J. (1999). “Test automation snake oil”. http://www.satisfice.com/articles/test_automation_snake_oil.pdf

● Buwalda, H. (undated). “Key success factors for keyword-driven testing”.

https://www.logigear.com/magazine/test-methods-and-metrics/key-success-factors-for-keyword-driven-testing/

● Engstrom, E., Skoglund, M. & Runeson, P. (2008). “Empirical evaluations of regression test selection techniques: A systematic review”.

Conference on Empirical Software Engineering and Measurement. 22-31.

https://www.academia.edu/8375788/Empirical_evaluations_of_regression_test_selection_techniques_a_systematic_review

● Groder, C. (1999). Building maintainable GUI tests. In Fewster, M. & Graham, D. (1999). Software Test Automation. Addison-Wesley

● Harrold, M.J. & Orso, A. (2008). “Retesting software during development and maintenance”. Frontiers of Software Maintenance.

https://ieeexplore.ieee.org/document/4659253

● Kaner, C. (1997). “Improving the maintainability of automated test suites”. Software QA, (4)(4). http://www.kaner.com/pdfs/autosqa.pdf

● Kaner, C. (1998). “Avoiding shelfware: A manager’s view of automated GUI testing.” Software Testing Analysis & Review (STAR East).

http://www.kaner.com/pdfs/shelfwar.pdf

● Kaner, C. (2009). The value of checklists and the danger of scripts: What legal training suggests for testers. Conference of the Association

for Software Testing. http://www.kaner.com/pdfs/ValueOfChecklists.pdf

References

http://www.satisfice.com/articles/test_automation_snake_oil.pdf
https://www.logigear.com/magazine/test-methods-and-metrics/key-success-factors-for-keyword-driven-testing/
https://www.academia.edu/8375788/Empirical_evaluations_of_regression_test_selection_techniques_a_systematic_review
https://ieeexplore.ieee.org/document/4659253
http://www.kaner.com/pdfs/autosqa.pdf
http://www.kaner.com/pdfs/shelfwar.pdf
http://www.kaner.com/pdfs/ValueOfChecklists.pdf

543Copyright © 2020 AltomReferences List

Regression testing (continued)

● Leung, H.K.N. & White, L.J. (1989). “Insights into regression testing”. Proceedings of the International Conference on Software Maintenance.

60-69. https://www.computer.org/csdl/proceedings-article/icsm/1989/00065194/12OmNyuPLnW

● Marick, B.M. (1999). “When should a test be automated?” International Conference on Software Testing Analysis and Review (STAR East).

http://www.exampler.com/testing-com/writings/automate.pdf

● Marick, B.M. (2005). “Working your way out of the automated GUI testing tarpit” (parts 1, 2, 3).

http://www.exampler.com/old-blog/2005/12/08/index.html#automation1

● Marick, B.M. (undated). “How many bugs do regression tests find?"

http://www.sqa.fyicenter.com/art/How_Many_Bugs_Do_Regression_Tests_Find.html

● Memon, A.M. & Xie, Q. (2004) “Empirical evaluation of the fault-detection effectiveness of smoke regression test cases for GUI-based

software”. Proceedings of the International Conference on Software Maintenance. http://www.cs.umd.edu/~atif/papers/MemonICSM2004.pdf

● Mugridge, R. & Cunningham. W. (2005) Fit for Developing Software: Framework for Integrated Tests. Prentice Hall.

● Nguyen, H.Q., Hackett, M., & Whitlock, B.K. (2006). Happy About Global Test Automation. Happy About books.

● Onoma, A.K., Tsai, W.T., Poonawala, M.H., & Sugunama, H. (1998). Regression testing in an industrial environment. Communications of the

ACM. 41(5), 81-86

References

https://www.computer.org/csdl/proceedings-article/icsm/1989/00065194/12OmNyuPLnW
http://www.exampler.com/testing-com/writings/automate.pdf
http://www.exampler.com/old-blog/2005/12/08/index.html#automation1
http://www.sqa.fyicenter.com/art/How_Many_Bugs_Do_Regression_Tests_Find.html
http://www.cs.umd.edu/~atif/papers/MemonICSM2004.pdf

544Copyright © 2020 AltomReferences List

Regression testing (continued)

● Pettichord, B. (2001a). “Seven steps to test automation success”. https://www.stickyminds.com/presentation/seven-steps-test-automation-success

● Pettichord, B. (2001b). “Success with test automation”. https://www.prismnet.com/~wazmo/succpap.htm

● Rothermel, G. & Harrold, M. (1997). “Experience with regression test selection”. Empirical Software Engineering, 2(2), 178-188.

https://www.researchgate.net/publication/2355519_Experience_With_Regression_Test_Selection

Requirements-based testing

● Bach, J. (1999). Risk and requirements-based testing. IEEE Computer, June, 113-114. www.satisfice.com/articles/requirements_based_testing.pdf

● Bender, R. (2009). Requirements Based Testing Process Overview.

http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf

● Culbertson, R., Brown, C., & Cobb, G. (2002). Rapid Testing. Prentice Hall.

● Whalen, M.W., Rajan, A., Heimdahl, M.P.E., & Miller, S.P.)2006). “Coverage metrics for requirements-based testing”. Proceedings of the

2006 International Symposium on Software Testing and Analysis. http://portal.acm.org/citation.cfm?id=1146242

● Wiegers, K.E. (1999). Software Requirements. Microsoft Press.

● Bach, J. (1999). “Heuristic risk-based testing”. Software Testing & Quality Engineering. http://www.satisfice.com/articles/hrbt.pdf

References

https://www.stickyminds.com/presentation/seven-steps-test-automation-success
https://www.prismnet.com/~wazmo/succpap.htm
https://www.researchgate.net/publication/2355519_Experience_With_Regression_Test_Selection
http://www.satisfice.com/articles/requirements_based_testing.pdf
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://portal.acm.org/citation.cfm?id=1146242
http://www.satisfice.com/articles/hrbt.pdf

545Copyright © 2020 AltomReferences List

Risk-based testing

● Bach, J. (2000a). “Heuristic test planning: Context model”. http://www.satisfice.com/tools/satisfice-cm.pdf

● Bach, J. (2003). “Troubleshooting risk-based testing”. Software Testing & Quality Engineering, May/June, 28-32.

https://www.satisfice.com/download/troubleshooting-risk-based-testing

● Becker, S.A. & Berkemeyer, A. (1999). The application of a software testing technique to uncover data errors in a database system. Proceedings

of the 20th Annual Pacific Northwest Software Quality Conference, 173-183.

● Berkovich, Y. (2000). Software quality prediction using case-based reasoning. M.Sc. Thesis (Computer Science). Florida Atlantic University.

● Bernstein, P.L. (1998). Against the Gods: The Remarkable Story of Risk. Wiley.

● Black, R. (2007). Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional. Wiley.

● Clemen, R.T. (1996, 2nd ed.). Making Hard Decisions: An Introduction to Decision Analysis. Cengage Learning.

● Copeland, L. (2004). A Practitioner's Guide to Software Test Design. Artech House.

● DeMarco, T. & Lister, T. (2003). Waltzing with Bears. Managing Risk on Software Projects. Dorset House.

● Dorner, D. (1997). The Logic of Failure. Basic Books.

● Gerrard, P. & Thompson, N. (2002). Risk-Based E-Business Testing. Artech House.

References

http://www.satisfice.com/tools/satisfice-cm.pdf
https://www.satisfice.com/download/troubleshooting-risk-based-testing

546Copyright © 2020 AltomReferences List

Risk-based testing (continued)

● HAZOP Guidelines (2011). “Hazardous Industry Planning Advisory Paper No. 8”, NSW Government Department of Planning.

https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf

● Hillson, D. & Murray-Webster, R. (2007, 2nd Ed.). “Understanding and Managing Risk Attitude”. Gower.

https://books.google.ro/books/about/Understanding_and_Managing_Risk_Attitude.html?id=VeMdki1LYEUC&redir_esc=y

● Hubbard, D.W. (2009). The Failure of Risk Management: Why It's Broken and How to Fix It. Wiley.

● Jorgensen, A.A. (2003). “Testing with hostile data streams”. ACM SIGSOFT Software Engineering Notes, 28(2).

http://cs.fit.edu/media/TechnicalReports/cs-2003-03.pdf

● Jorgensen, A.A. & Tilley, S.R. (2003). “On the security risks of not adopting hostile data stream testing techniques”. 3rd International

Workshop on Adoption-Centric Software Engineering (ACSE 2003), p. 99-103. http://www.sei.cmu.edu/reports/03sr004.pdf

● Kaner, C., Falk, J., & Nguyen, H.Q. (2nd Edition, 2000a). Testing Computer Software. Wiley.

● Kaner, C. (2008). “Improve the power of your tests with risk-based test design”. Quality Assurance Institute QUEST conference.

http://www.kaner.com/pdfs/QAIriskKeynote2008.pdf

● Neumann, P.G. (undated). “The Risks Digest: Forum on Risks to the Public in Computers and Related Systems”. http://catless.ncl.ac.uk/risks

References

https://www.planning.nsw.gov.au/-/media/Files/DPE/Guidelines/hazardous-industry-planning-advisory-paper-no-8-hazop-guidelines-2011-01.pdf
https://books.google.ro/books/about/Understanding_and_Managing_Risk_Attitude.html?id=VeMdki1LYEUC&redir_esc=y
http://cs.fit.edu/media/TechnicalReports/cs-2003-03.pdf
http://www.sei.cmu.edu/reports/03sr004.pdf
http://www.kaner.com/pdfs/QAIriskKeynote2008.pdf
http://catless.ncl.ac.uk/risks

547Copyright © 2020 AltomReferences List

Risk-based testing (continued)

● Perrow, C. (1999). Normal Accidents: Living with High-Risk Technologies. Princeton University Press (but read this in conjunction with Robert

Hedges' review of the book on Amazon.com).

● Petroski, H. (1992). To Engineer is Human: The Role of Failure in Successful Design. Vintage.

● Petroski, H. (2004). Small Things Considered: Why There is No Perfect Design. Vintage.

● Petroski, H. (2008). Success Through Failure: The Paradox of Design. Princeton University Press.

● Pettichord, B. (2001). “The role of information in risk-based testing”. International Conference on Software Testing Analysis & Review (STAR

East). https://www.stickyminds.com/presentation/role-information-risk-based-testing

● Reason, J. T. (1997). Managing the Risks of Organizational Accident. Ashgate Publishing.

● Schultz, C.P., Bryant, R., & Langdell, T. (2005). Game Testing All in One. Thomson Press (discussion of defect triggers).

● Weinberg, G. (1993). Quality Software Management. Volume 2: First Order Measurement. Dorset House.

Rounding errors (see Calculations)

References

https://www.stickyminds.com/presentation/role-information-risk-based-testing

548Copyright © 2020 AltomReferences List

Scenario testing (See also Use-case-based testing)

● Alexander, D. (2000). Scenario methodology for teaching principles of emergency management. Disaster Prevention & Management, Vol. 9(2), pp.

89-97.

● Alexander, I., & Maiden, N. (2004). Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle. Wiley.

● Anggreeni, I., & van der Voort, M. (2007). “Tracing the scenarios in scenario-based product design: A study to support scenario generation”.

Technical Report TR-CTIT-07-70, Centre for Telematics and Information Technology, University of Twente, Enschede. ISSN 1381-3625.

http://eprints.eemcs.utwente.nl/11231/01/TR-CTIT-07-70.pdf

● Bolton, M. (2007). Users we don’t like. Developsense.com. http://www.developsense.com/articles/2007-08-UsersWeDontLike.pdf

● Bolton, M. (2007). Why we do scenario testing. Developsense.com. http://www.developsense.com/blog/2010/05/why-we-do-scenario-testing/

● Buwalda, H. (2000a). “The three holy grails of test development”. presented at EuroSTAR conference.

● Buwalda, H., Janssen, D. & Pinkster, I. (2002). Integrated Test Design and Automation: Using the TestFrame Method. Addison-Wesley.

● Buwalda, H. (2004). “Soap Opera Testing”. International Software Quality Week Europe conference, Brussels.

https://www.logigear.com/logi_media_dir/Documents/whitepapers/soap_opera_testing.pdf

● Buwalda, H. (2008). “The potential and risks of keyword based testing”.

https://www.logigear.com/magazine/action-based-testing/the-potential-and-risks-of-keyword-based-testing/

References

http://eprints.eemcs.utwente.nl/11231/01/TR-CTIT-07-70.pdf
http://www.developsense.com/articles/2007-08-UsersWeDontLike.pdf
http://www.developsense.com/blog/2010/05/why-we-do-scenario-testing/
https://www.logigear.com/logi_media_dir/Documents/whitepapers/soap_opera_testing.pdf
https://www.logigear.com/magazine/action-based-testing/the-potential-and-risks-of-keyword-based-testing/

549Copyright © 2020 AltomReferences List

Scenario testing (continued)

● Buwalda, H. (2011). “Key principles of test design”. https://www.logigear.com/magazine/test-methods-and-metrics/key-principles-of-test-design-2/

● Buwalda, H. (undated). “Key success factors for keyword-driven testing”.

https://www.logigear.com/magazine/test-methods-and-metrics/key-success-factors-for-keyword-driven-testing/

● Carroll, J.M. (ed.) (1995). Scenario-Based Design. Wiley.

● Carroll, J.M. (1995). Development, Scenario-Based Design: Envisioning Work and Technology in System. Wiley.

● Carroll, J.M. (1999). “Five reasons for scenario-based design”. Proceedings of the 32nd Hawaii International Conference on System Sciences,

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.7467&rep=rep1&type=pdf

● Guckenheimer, S. & Perez, J. (2006). Software Engineering with Microsoft Visual Studio Team System. Addison Wesley.

● Heijden, Kes van der (1996). Scenarios: The Art of Strategic Conversation. Wiley.

● Kahn, H. (1967). The use of scenarios. In Kahn, Herman & Wiener, Anthony (1967). The Year 2000: A Framework for Speculation on the Next

Thirty-Three Years, pp. 262-264. https://www.hudson.org/research/2214-the-use-of-scenarios

● Kaner, C. (2003). “An introduction to scenario testing”. http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

● Kruchten, P., (2003). The Rational Unified Process: An Introduction. 3d edition. Addison-Wesley Professional.

References

https://www.logigear.com/magazine/test-methods-and-metrics/key-principles-of-test-design-2/
https://www.logigear.com/magazine/test-methods-and-metrics/key-success-factors-for-keyword-driven-testing/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.7467&rep=rep1&type=pdf
https://www.hudson.org/research/2214-the-use-of-scenarios
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

550Copyright © 2020 AltomReferences List

Scenario testing (continued) (See also Use-case-based testing and Task analysis)

● Memon, A.M., Pollack, M.E., & Soffa, M.L. (2000). “A planning-based approach to GUI testing”. International Software Quality Week, San

Francisco. https://www.cs.umd.edu/~atif/papers/MemonSQW2000-abstract.html

● Ringland, G. (1998). Scenario Planning: Managing for the Future. Wiley.

● Rippel, M. & Teply, P. (2009). Operational Risk -- Scenario Analysis. Working Papers IES 2008/15, Charles University Prague, Faculty of Social

Sciences, Institute of Economic Studies, revised Sep 2008. http://ideas.repec.org/p/fau/wpaper/wp2008_15.html

● Rosson, M.B., & Carroll, J.M. (2002). Usability Engineering: Morgan Kaufmann.

● Rothman, J., & Lawrence, B. (1999). Testing in the dark. Software Quality & Design Engineering, 1(2). Pp. 34-39

https://www.jrothman.com/articles/1999/03/a-pragmatic-strategy-for-not-testing-in-the-dark

● Wack, P. (1985a). Scenarios: Uncharted waters ahead. Harvard Business Review 63(5), 74-89.

https://hbr.org/1985/09/scenarios-uncharted-waters-ahead

● Wack, P. (1985b). Scenarios: Shooting the rapids. Harvard Business Review 63(6), 139-150.

http://www.scribd.com/doc/4489875/Wack-Shooting-the-rapids

References

https://www.cs.umd.edu/~atif/papers/MemonSQW2000-abstract.html
http://ideas.repec.org/p/fau/wpaper/wp2008_15.html
https://www.jrothman.com/articles/1999/03/a-pragmatic-strategy-for-not-testing-in-the-dark
https://hbr.org/1985/09/scenarios-uncharted-waters-ahead
http://www.scribd.com/doc/4489875/Wack-Shooting-the-rapids

551Copyright © 2020 AltomReferences List

Scenario testing (continued) (See also Use-case-based testing and Task analysis)

● Walker, W.E. (1994). ”The use of scenarios and gaming in crisis management planning and training”. Presented at the conference, The Use

of Scenarios for Crisis Management, Netherlands Ministry of Home Affairs, at the Netherlands Institute for Fire Service & Disaster Mgmt,

Arnhem, November,16-18. https://www.rand.org/pubs/papers/P7897.html

● Weber, B. (2008) “Information Commerce 1997 – Scenario Mapping Changes Beliefs”.

https://www.strategykinetics.com/2008/02/information-com.html

Self-verifying data

● Knaus, R. Aougab, H., & Bentahar, N. (2004). Software Reliability: A Preliminary Handbook. McLean, VA: United States Department of

Transportation: Federal Highway Administration (see the discussions of wrapping, especially Chapter 6).

http://www.fhwa.dot.gov/publications/research/safety/04080/04080.pdf

● Nyman, N. (1999). “Self-verifying data: Validating Test Results without an Oracle”. International Conference on Software Testing Analysis &

Research (STAR East), Orlando. https://www.stickyminds.com/presentation/self-verifying-data-validating-test-results-without-oracle

● Romero, G. & Gauvin, C. (1998). Self-verifying communications testing. United States Patent US7409618,

http://www.patents.com/self-verifying-communications-testing-7409618.html

References

https://www.rand.org/pubs/papers/P7897.html
https://www.strategykinetics.com/2008/02/information-com.html
http://www.fhwa.dot.gov/publications/research/safety/04080/04080.pdf
https://www.stickyminds.com/presentation/self-verifying-data-validating-test-results-without-oracle
http://www.patents.com/self-verifying-communications-testing-7409618.html

552Copyright © 2020 AltomReferences List

Specification-based testing (See also active reading; See also ambiguity analysis)

● Bach, J. (1999). “Reframing requirements analysis”. IEEE Computer, 32(2), 120-122. https://www.satisfice.com/download/1115

● Bach, J. (2019). “Heuristic test strategy model”, Version 5.7.5. https://www.satisfice.com/download/heuristic-test-strategy-model

● Black, R. (2007). Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional. Wiley.

● Donat, M. R. (1998). A Discipline of Specification-Based Test Derivation, Ph.D. Dissertation (Computer Science). University of British Columbia.

http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp02/NQ34519.pdf

● Hayes, J.H. (1999). Input Validation Testing: A System-Level, Early Lifecycle Technique. Ph.D. Dissertation (Computer Science), George Mason

University. https://cs.gmu.edu/~offutt/documents/theses/HayesDissertation.pdf

● Jacky, J., Veanes, M., Campbell, C. & Schulte, W. (2008). Model-Based Software Testing and Analysis with C#. Cambridge University Press.

● Kaner, C. (1998). “Liability for product incompatibility”. Software QA, 5(4), p. 33ff. http://www.kaner.com/pdfs/liability.pdf

● Kaner, C. (2003). “Liability for defective documentation”. Conference of the ACM SIGDOC. http://www.kaner.com/pdfs/liability_sigdoc.pdf

State-model-based testing

● Auer, A.J. (1997). State Testing of Embedded Software. Ph.D. Dissertation (Computer Science). Oulun Yliopisto (Finland).

● Becker, S.A. & Whittaker, J.A. (1997). Cleanroom Software Engineering Practices. IDEA Group Publishing.

References

https://www.satisfice.com/download/1115
https://www.satisfice.com/download/heuristic-test-strategy-model
http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp02/NQ34519.pdf
https://cs.gmu.edu/~offutt/documents/theses/HayesDissertation.pdf
http://www.kaner.com/pdfs/liability.pdf
http://www.kaner.com/pdfs/liability_sigdoc.pdf

553Copyright © 2020 AltomReferences List

State-model-based testing (continued)

● Buwalda, H. (2003). “Action figures”. Software Testing & Quality Engineering. March/April 42-27.

https://www.logigear.com/logi_media_dir/Documents/whitepapers/action_figures.pdf

● El-Far, I. K. (1999), Automated Construction of Software Behavior Models, Masters Thesis, Florida Institute of Technology, 1999.

● El-Far, I. K. & Whittaker, J.A. (2001), “Model-based software testing”, in Marciniak, J.J. (2001). Encyclopedia of Software Engineering, Wiley.

https://testoptimal.com/ref/Model-based%20Software%20Testing.pdf

● Jorgensen, A.A. (1999). Software Design Based on Operational Modes. Doctoral Dissertation, Florida Institute of Technology.

https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf

● Katara, M., Kervinen, A., Maunumaa, M., Paakkonen, T., & Jaaskelainen, A. (2007). “Can I have some model-based GUI tests please?

Providing a model-based testing service through a web interface”. Conference of the Association for Software Testing.

www.academia.edu/9150660/Can_I_Have_Some_Model_Based_GUI_Tests_Please_Providing_a_Model_Based_Testing_Service_through_a_Web_Interface

● Mallery, C.J. (2005). On the Feasibility of Using FSM Approaches to Test Large Web Applications. M.Sc. Thesis (EECS). Washington State University

● Page, A., Johnston, K., & Rollison, B.J. (2009). How We Test Software at Microsoft. Microsoft Press.

● Robinson, H. (1999a). “Finite state model-based testing on a shoestring”.

https://www.stickyminds.com/presentation/finite-state-model-based-testing-shoestring

References

https://www.logigear.com/logi_media_dir/Documents/whitepapers/action_figures.pdf
https://testoptimal.com/ref/Model-based%20Software%20Testing.pdf
https://cs.fit.edu/media/TechnicalReports/cs-2002-09.pdf
https://www.academia.edu/9150660/Can_I_Have_Some_Model_Based_GUI_Tests_Please_Providing_a_Model_Based_Testing_Service_through_a_Web_Interface
https://www.stickyminds.com/presentation/finite-state-model-based-testing-shoestring

554Copyright © 2020 AltomReferences List

State-model-based testing (continued)

● Robinson, H. (1999b). “Graph theory techniques in model-based testing”. International Conference on Testing Computer Software.

http://testoptimal.com/ref/GraphTheory%20Techniques%20In%20Model-Based%20Testing.pdf

● Robinson, H. “Model-Based Testing” Home Page. http://www.harryrobinson.net/

● Rosaria, S., & Robinson, H. (2000). “Applying models in your testing process”. Information & Software Technology, 42(12), 815-24.

http://www.harryrobinson.net/ApplyingModels.pdf

● Schultz, C.P., Bryant, R., & Langdell, T. (2005). Game Testing All in One. Thomson Press.

● Utting, M., & Legeard, B. (2007). Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann.

● Vagoun, T. (1994). State-Based Software Testing. Ph.D. Dissertation (Computer Science). University of Maryland College Park.

● Whittaker, J.A. (1992). Markov Chain Techniques for Software Testing and Reliability Analysis. Ph.D. Dissertation (Computer Science).

University of Tennessee.

● Whittaker, J.A. (1997). Stochastic software testing. Annals of Software Engineering, 4, 115-131.

References

http://testoptimal.com/ref/GraphTheory%20Techniques%20In%20Model-Based%20Testing.pdf
http://www.harryrobinson.net/
http://www.harryrobinson.net/ApplyingModels.pdf

555Copyright © 2020 AltomReferences List

Stress testing

● http://en.wikipedia.org/wiki/Stress_testing

● Beizer, B. (1984). Software System Testing and Quality Assurance. Van Nostrand. See also:

http://www.faqs.org/faqs/software-eng/testing-faq/section-15.html

Task analysis (see also Scenario testing and Use-case-based testing)

● Crandall, B., Klein, G., & Hoffman, R.B. (2006). Working Minds: A Practitioner's Guide to Cognitive Task Analysis. MIT Press.

● Draper, D. & Stanton, N. (2004). The Handbook of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum.

● Ericsson, K.A. & Simon, H.A. (1993). Protocol Analysis: Verbal Reports as Data (Revised Edition). MIT Press.

● Gause, D.C., & Weinberg, G.M. (1989). Exploring Requirements: Quality Before Design. Dorset House.

● Hackos, J.T. & Redish, J.C. (1998). User and Task Analysis for Interface Design. Wiley.

● Jonassen, D.H., Tessmer, M., & Hannum, W.H. (1999). Task Analysis Methods for Instructional Design.

● Robertson, S. & Robertson, J. C. (2006, 2nd Ed.). Mastering the Requirements Process. Addison-Wesley Professional.

● Schraagen, J.M., Chipman, S.F., & Shalin, V.I. (2000). Cognitive Task Analysis. Lawrence Erlbaum.

● Shepard, A. (2001). Hierarchical Task Analysis. Taylor & Francis.

References

http://en.wikipedia.org/wiki/Stress_testing
http://www.faqs.org/faqs/software-eng/testing-faq/section-15.html

556Copyright © 2020 AltomReferences List

Test design/test techniques (in general)

● Bach, J. (2000). “Heuristic Test Planning: Context Model”. https://www.satisfice.com/download/rapid-software-testing-context-model

● Bach, J. (2019). “Heuristic test strategy model”. Version 5.7.5. https://www.satisfice.com/download/heuristic-test-strategy-model

● Black, R. (2007). Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional. Wiley.

● Buwalda, H. (2007). “Key principles of test design”. http://logigear.com/newsletter-2007/304-key-principles-of-test-design.html

● Collard, R. (2001). “Test Design Fundamentals”. International Conference on Software Testing Analysis & Review. (STAR West)

● Copeland, L. (2004). A Practitioner's Guide to Software Test Design. Artech House.

● Desikan, S. & Gopalaswamy, R. (2006). Software Testing: Principles and Practices. Pearson Education.

● Edgren, R. (2011). “The Little Black Book on Test Design”. http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/

● Emilsson, H., Jansson, M., Edgren, R. (2010). “Software Quality Characteristics 1.0”.

http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

● Jorgensen, P. (2008, 3rd Ed.). Software Testing: A Craftsman’s Approach. Auerbach Publications.

● Kaner, C. (2003). “What is a good test case?” http://www.kaner.com/pdfs/GoodTest.pdf

● Kaner, C. (2004b). “The ongoing revolution in software testing”. Software Test & Performance conference.

http://www.kaner.com/pdfs/TheOngoingRevolution.pdf

References

https://www.satisfice.com/download/rapid-software-testing-context-model
https://www.satisfice.com/download/heuristic-test-strategy-model
http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/
http://www.kaner.com/pdfs/GoodTest.pdf
http://www.kaner.com/pdfs/TheOngoingRevolution.pdf

557Copyright © 2020 AltomReferences List

Test design/test techniques (in general) (continued)

● Kaner, C., Bach, J., & Pettichord, B. (2001). Lessons Learned in Software Testing. Chapter 3: Test Techniques.

http://media.techtarget.com/searchSoftwareQuality/downloads/Lessons_Learned_in_SW_testingCh3.pdf

● Kelly, M.D. (2007). “Specialists and other myths: Because you aren't a specialist doesn't mean you can't do it”. Conference of the

Association for Software Testing.

https://static1.squarespace.com/static/5b227a10e17ba39c651b4f39/t/600338162a9f8919559d26dc/1610823702817/Specialists_SLIDES.pdf

https://static1.squarespace.com/static/5b227a10e17ba39c651b4f39/t/600337f5655a78118b96c31d/1610823669878/CAST2007_SpecialistsAndOtherMyths

.pdf

● Loveland, S., Miller, G. Prewitt, R., & Shannon, M. (2005). Software Testing Techniques: Finding the Techniques that Matter. Charles River

Media.

● McMillan, D. (2010). “Tales from the trenches: Lean test case design”. http://www.bettertesting.co.uk/content/?p=253

● Nguyen, H.Q., Johnson, B., & Hackett, M. (2003). Testing Applications on the Web, 2nd Ed. Wiley.

● Page, A., Johnston, K., & Rollison, B.J. (2009). How We Test Software at Microsoft. Microsoft Press.

● Perry, W.E. (2006). Effective Methods for Software Testing. Wiley.

● Rajani, R., & Oak, P. (2004). Software Testing: Effective Methods, Tools & Techniques. Tata McGraw-Hill.

● Ryber,. T. (2007). Essential Software Test Design. Fearless Consulting.

References

http://media.techtarget.com/searchSoftwareQuality/downloads/Lessons_Learned_in_SW_testingCh3.pdf
https://static1.squarespace.com/static/5b227a10e17ba39c651b4f39/t/600338162a9f8919559d26dc/1610823702817/Specialists_SLIDES.pdf
https://static1.squarespace.com/static/5b227a10e17ba39c651b4f39/t/600337f5655a78118b96c31d/1610823669878/CAST2007_SpecialistsAndOtherMyths.pdf
https://static1.squarespace.com/static/5b227a10e17ba39c651b4f39/t/600337f5655a78118b96c31d/1610823669878/CAST2007_SpecialistsAndOtherMyths.pdf
http://www.bettertesting.co.uk/content/?p=253

558Copyright © 2020 AltomReferences List

Test design/test techniques (in general) (continued)

● Schultz, C.P., Bryant, R., & Langdell, T. (2005). Game Testing All in One. Thomson Press.

● Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute Force Vulnerability Discovery. Addison Wesley.

● Takanen, A., DeMott, J., & Miller, C. (2008). Fuzzing for Software Security Testing and Quality Assurance. Artech House.

● Whittaker, J.A. (2002). How to Break Software. Addison Wesley.

Test idea catalogs

● Edgren, R. (2009). “More and better test ideas”. EuroSTAR. http://www.thetesteye.com/papers/redgren_moreandbettertestideas.pdf

● Edgren, R. (2011). “The Little Black Book on Test Design”. http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/

● Hendrickson, E. (2006). “Test Heuristics Cheat Sheet”. http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf

● Hunter, M. J. (2010). “You are not done yet”. http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

● Kaner, C., Padmanabhan, S., & Hoffman, D. (2013) Domain Testing: A Workbook. Context Driven Press.

● Marick, B.M. (1994). The Craft of Software Testing: Subsystems Testing Including Object-Based and Object-Oriented Testing. Prentice-Hall.

Updated catalog: http://www.exampler.com/testing-com/writings/catalog.pdf

● Marick, B.M. (undated). “A short catalog of test ideas for…” http://www.exampler.com/testing-com/writings/short-catalog.pdf

References

http://www.thetesteye.com/papers/redgren_moreandbettertestideas.pdf
http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/
http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf
http://www.exampler.com/testing-com/writings/catalog.pdf
http://www.exampler.com/testing-com/writings/short-catalog.pdf

559Copyright © 2020 AltomReferences List

Test idea catalogs (continued)

● Edgren, R. (2009). “More and better test ideas”. EuroSTAR. http://www.thetesteye.com/papers/redgren_moreandbettertestideas.pdf

● Edgren, R. (2011). “The Little Black Book on Test Design”. http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/

● Hendrickson, E. (2006). “Test Heuristics Cheat Sheet”. http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf

● Hunter, M. J. (2010). “You are not done yet”. http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

● Kaner, C., Padmanabhan, S., & Hoffman, D. (2013) Domain Testing: A Workbook. Context Driven Press.

● Marick, B.M. (1994). The Craft of Software Testing: Subsystems Testing Including Object-Based and Object-Oriented Testing. Prentice-Hall.

Updated catalog: http://www.exampler.com/testing-com/writings/catalog.pdf

● Marick, B.M. (undated). “A short catalog of test ideas for…” http://www.exampler.com/testing-com/writings/short-catalog.pdf

● Nguyen, H.Q., Johnson, B., & Hackett, M. (2003, 2nd ed), Testing Applications on the Web. Wiley (Appendices D through H).

● Sabourin, R. (2011). “What are good sources of less common agile test ideas?”. Better Software, March/April 2011.

https://www.stickyminds.com/better-software-magazine-article/faq-what-are-good-sources-less-common-agile-test-ideas

References

http://www.thetesteye.com/papers/redgren_moreandbettertestideas.pdf
http://thetesteye.com/blog/2011/09/the-little-black-book-on-test-design/
http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf
http://www.exampler.com/testing-com/writings/catalog.pdf
http://www.exampler.com/testing-com/writings/short-catalog.pdf
https://www.stickyminds.com/better-software-magazine-article/faq-what-are-good-sources-less-common-agile-test-ideas

560Copyright © 2020 AltomReferences List

Testing skill

Many of the references in this collection are about the development of testing skill. However, a few papers stand out, to me, as exemplars

of papers that focus on activities or structures designed to help testers improve their day-to-day testing skills. We need more of these.

● Bach, J. (2019). Heuristic test strategy model, Version 5.7.5. https://www.satisfice.com/download/heuristic-test-strategy-model

● Gärtner, M. (2011) “Testing Dojos: Craftsmanship in Software Testing”. Blog at http://www.testingdojo.org/tiki-index.php.

● Hendrickson, E. (2006), “Test heuristics cheat sheet”. http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf

● Hunter, M. J. (2010). “You are not done yet”. http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

Tours

● Bolton, M. (2009). “Of testing tours and dashboards”. http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards

● Craig, R. D., & Jaskiel, S. P. (2002). Systematic Software Testing. Artech House. (see their discussions of inventories)

● Goucher, A. (2009). Exploratory Software Testing – a cheat of a book. http://adam.goucher.ca/?p=1225

● Kelly, M.D. (2005). “Touring Heuristic”. https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

● Kelly, M.D. (2006). “Taking a tour through test country. A guide to tours to take on your next test project”. Software Test and Performance

Magazine, February, 20-25. http://testingeducation.org/BBST/testdesign/Kelly_Taking_a_Tour_Through_Test_Country.pdf

References

https://www.satisfice.com/download/heuristic-test-strategy-model
http://www.testingdojo.org/tiki-index.php
http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards
http://adam.goucher.ca/?p=1225
https://www.michaeldkelly.com/blog/2005/9/20/touring-heuristic.html
http://testingeducation.org/BBST/testdesign/Kelly_Taking_a_Tour_Through_Test_Country.pdf

561Copyright © 2020 AltomReferences List

Tours (continued)

● Kohl, J. (2006). “Modeling test heuristics”. http://www.kohl.ca/blog/archives/000179.html

● Laplante, P. (2009). “Exploratory testing for mission critical, real-time, and embedded systems”. Part of the IEEE Reliability Society 2009

Annual Technology Report. https://rs.ieee.org/images/files/Publications/2009/2009-08.pdf

● Whittaker, J.A. (2009). Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test Design. Addison-Wesley.

Usability testing

● Cooper, A. (2004). The Inmates are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity. Pearson

Education.

● Cooper, A., Reimann, R. & Cronin, D. (2007). About Face 3: The Essentials of Interaction Design. Wiley.

● Dumas, J.S. & Loring, B.A. (2008). Moderating Usability Tests: Principles and Practices for Interacting. Morgan Kaufmann.

● Fiedler, R.L., & Kaner, C. (2009). “Putting the context in context-driven testing (an application of Cultural Historical Activity Theory).”

Conference of the Association for Software Testing. http://www.kaner.com/pdfs/FiedlerKanerCast2009.pdf

● Ives, B., Olson, M.H., & Baroudi, J.J. (1983). The measurement of user information systems. Communications of the ACM, 26(10), 785-793.

http://portal.acm.org/citation.cfm?id=358430

References

http://www.kohl.ca/blog/archives/000179.html
https://rs.ieee.org/images/files/Publications/2009/2009-08.pdf
http://www.kaner.com/pdfs/FiedlerKanerCast2009.pdf
http://portal.acm.org/citation.cfm?id=358430

562Copyright © 2020 AltomReferences List

Usability testing (continued)

● Krug, S. (2005, 2nd Ed.). Don't Make Me Think: A Common Sense Approach to Web Usability. New Riders Press.

● Kuniavsky, M. (2003). Observing the User Experience: A Practitioner's Guide to User Research. Morgan Kaufmann.

● Lazar, J., Fend, J.H., & Hochheiser, H. (2010). Research Methods in Human-Computer Interaction. Wiley.

● Nielsen, J. (1994). “10 Usability Heuristics for User Interface Design” https://www.nngroup.com/articles/ten-usability-heuristics

● Nielsen, J. (1994). “Guerrilla HCI: Using discount usability engineering to penetrate the intimidation barrier”.

http://www.useit.com/papers/guerrilla_hci.html

● Nielsen, J. (1999). Designing Web Usability. Peachpit Press.

● Nielson, J. & Loranger, H. (2006). Prioritize Web Usability. MIT Press.

● Norman, D.A. (2010). Living with Complexity. MIT Press.

● Norman, D.A. (1994). Things that Make Us Smart: Defending Human Attributes in the Age of the Machine. Basic Books.

● Norman, D.A. & Draper, S.W. (1986). User Centered System Design: New Perspectives on Human-Computer Interaction. CRC Press.

● Patel, M. & Loring, B. (2001). Handling awkward usability testing situations. Proceedings of the Human Factors and Ergonomics Society 45th

Annual Meeting. 1772-1776.

● Pente D. (2016). “Learning, evaluating and testing with usability heuristics”. https://altom.com/learning-evaluating-testing-usability-heuristics/

References

https://www.nngroup.com/articles/ten-usability-heuristics/
http://www.useit.com/papers/guerrilla_hci.html
https://altom.com/learning-evaluating-testing-usability-heuristics/

563Copyright © 2020 AltomReferences List

Usability testing (continued)

● Platt, D.S. (2006). Why Software Sucks. Addison-Wesley.

● Rubin, J., Chisnell, D. & Spool, J. (2008). Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests. Wiley.

● Smilowitz, E.D., Darnell, M.J., & Benson, A.E. (1993). Are we overlooking some usability testing methods? A comparison of lab, beta, and forum

tests. Proceedings of the Human Factors and Ergonomics Society 37th Annual Meeting, 300-303.

● Stone, D., Jarrett, C., Woodroffe, M. & Minocha, S. (2005). User Interface Design and Evaluation. Morgan Kaufmann.

● Tullis, T. & Albert, W. (2008). Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics (Interactive Technologies).

Morgan Kaufmann.

Use-case based testing (see also Scenario testing and Task analysis)

● Adolph, S. & Bramble, P. (2003). Patterns for Effective Use Cases. Addison-Wesley.

● Alexander, Ian & Maiden, Neil. Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle.

● Alsumait, A. (2004). User Interface Requirements Engineering: A scenario-based framework. Ph.D. dissertation (Computer Science), Concordia

University.

References

564Copyright © 2020 AltomReferences List

Use-case based testing (see also Scenario testing and Task analysis) (continued)

● Berger, Bernie (2001) "The dangers of use cases employed as test cases," STAR West conference, San Jose, CA.

https://techwell.com/sites/default/files/articles/XDD3096filelistfilename1_0.pdf

● Charles, F.A. (2009). “Modeling scenarios using data”. STP Magazine.

http://www.quality-intelligence.com/articles/Modelling%20Scenarios%20Using%20Data_Paper_Fiona%20Charles_CAST%202009_Final.pdf

● Cockburn, A.(2001). Writing Effective Use Cases. Addison-Wesley.

● Cohn, M. (2004). User Stories Applied: For Agile Software Development. Pearson Education.

● Collard, R. (July/August 1999). Test design: Developing test cases from use cases. Software Testing & Quality Engineering, 31-36.

https://www.stickyminds.com/better-software-magazine/test-design-developing-test-cases-use-cases

● Hsia, P., Samuel, J. Gao, J. Kung, D., Toyoshima, Y. & Chen, C. (1994). Formal approach to scenario analysis. IEEE Software, 11(2), 33-41.

● Jacobson, I. (1995). The use-case construct in object-oriented software engineering. In John Carroll (ed.) (1995). Scenario-Based Design. Wiley.

● Jacobson, I., Booch, G. & Rumbaugh, J. (1999). The Unified Software Development Process. Addison-Wesley.

● Jacobson, I. & Bylund, S. (2000) The Road to the Unified Software Development Process. Cambridge University Press.

● Kim, Y. C. (2000). A Use Case Approach to Test Plan Generation During Design. Ph.D. Dissertation (Computer Science). Illinois Institute of

Technology.

References

https://techwell.com/sites/default/files/articles/XDD3096filelistfilename1_0.pdf
http://www.quality-intelligence.com/articles/Modelling%20Scenarios%20Using%20Data_Paper_Fiona%20Charles_CAST%202009_Final.pdf
https://www.stickyminds.com/better-software-magazine/test-design-developing-test-cases-use-cases

565Copyright © 2020 AltomReferences List

Use-case based testing (see also Scenario testing and Task analysis) (continued)

● Kruchten, P. (2003, 3rd Ed.). The Rational Unified Process: An Introduction. Addison-Wesley.

● Samuel, J. (1994). Scenario analysis in requirements elicitation and software testing. M.Sc. Thesis (Computer Science), University of Texas at

Arlington.

● Utting, M., & Legeard, B. (2007). Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann.

● Van der Poll, J.A., Kotze, P., Seffah, A., Radhakrishnan, T., & Alsumait, A. (2003). “Combining UCMs and formal methods for representing and

checking the validity of scenarios as user requirements”. Proceedings of the South African Institute of Computer Scientists and Information

Technologists on Enablement Through Technology. http://dl.acm.org/citation.cfm?id=954014.954021

● Zielczynski, P. (2006). “Traceability from use cases to test cases”. http://www.ibm.com/developerworks/rational/library/04/r-3217/

User interface testing

● Adzic, G. (2007). “Effective user interface testing”. http://gojko.net/2007/09/25/effective-user-interface-testing/

● Apple Computer (1993). Macintosh Human Interface Guidelines. Apple.

● Apple Computer (2021). “Human Interface Guidelines”. https://developer.apple.com/design/human-interface-guidelines/

References

http://dl.acm.org/citation.cfm?id=954014.954021
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://gojko.net/2007/09/25/effective-user-interface-testing/
https://developer.apple.com/design/human-interface-guidelines/

566Copyright © 2020 AltomReferences List

User interface testing (continued)

● Dudziak, T. (2005). “How to unit test the user interface of web applications”. ApacheCon US.

https://www.yumpu.com/en/document/read/17909325/how-to-unit-test-the-user-interface-of-web-applications-floyd

● McKay, E.N. (1999). Developing User Interfaces for Microsoft Windows. Microsoft Press.

● Microsoft (2015). “User experience guidelines for Universal Windows Platform (UWP) apps”.

http://download.microsoft.com/download/2/4/A/24A81A29-77CF-4AA5-967E-64E42554F21B/UWP%20app%20design%20guidelines%20v1509.pdf

● Nielsen, J. (2001). Coordinating User Interfaces for Consistency. Morgan Kaufmann.

● Olson, D.R. (1998). Developing User Interfaces. Morgan Kaufmann.

● Olson, D.R. (2009). Building Interactive Systems: Principles for Human-Computer Interaction. Course Technology.

● Visual Studio 2010 (undated). “Testing the user interface with automated UI tests”.

http://msdn.microsoft.com/en-us/library/dd286726%28VS.100%29.aspx

References

https://www.yumpu.com/en/document/read/17909325/how-to-unit-test-the-user-interface-of-web-applications-floyd
http://download.microsoft.com/download/2/4/A/24A81A29-77CF-4AA5-967E-64E42554F21B/UWP%20app%20design%20guidelines%20v1509.pdf
http://msdn.microsoft.com/en-us/library/dd286726%28VS.100%29.aspx

567Copyright © 2020 AltomReferences List

User testing (see beta testing)

● Albert, W., Tullis, T. & Tedesco, D. (2010). Beyond the Usability Lab: Conducting Large-Scale Online User Experience Studies. Morgan

Kaufmann.

● Wang, E., & Caldwell, B. (2002). An empirical study of usability testing: Heuristic evaluation vs. user testing. Proceedings of the Human

Factors and Ergonomics Society 46th Annual Meeting. 774-778.

References

	Lecture 1
	Notice
	Many Thanks...
	BBST Learning Objectives
	Course Objectives
	Changing Emphases Across the Courses
	Changing Emphases
	Course Overview: Fundamental Topics
	Today’s Readings
	Function Testing
	Identifying Functions
	Walking the User Interface
	The Demonstration...
	Tours and Exploration
	A Tour Yields an Inventory
	Touring Lays the Groundwork for Coverage-Oriented Testing
	Suggestions for Touring
	There Are Many Types of Tours
	Feature Tour
	Transactions Tour
	Error Message Tour
	Variables Tour
	Data Tour
	Sample Data Tour
	File Tour
	Structure Tour
	Operational Modes Tour
	Sequence Tour
	Claims Tour
	Benefits Tour
	Market Context Tour
	User Tour
	Life History Tour
	Configuration Tour
	Interoperability Tour
	Compatibility Tour
	Testability Tour
	Specified-Risk Tour
	Extreme Value Tour
	Complexity Tour

	Individual Differences Are to Be Expected
	Diversity and Exploration
	Function Testing: Key Objective
	Creating a Function List
	Using Function Testing in Early Testing of the Product
	Using Function Tests for Smoke Testing
	Using Function Testing Beyond Early Testing
	Using Function Testing as Your Main Technique
	The Fully-Detailed Function List
	Risks of Using Function Testing as Your Main Technique
	Test Techniques: Defined
	Approaches vs. Techniques
	Driving Ideas Behind Many Techniques
	Function Testing as a Technique
	Classifying the Techniques
	Examples
	Coverage-Based Techniques Focus on What Gets Tested
	Tester-Based Techniques Focus on Who Does the Testing
	Risk-Based Techniques Focus on Potential Problems
	Activity-Based Techniques Focus on How You Do the Testing
	Evaluation-Based Techniques Focus on Your Oracle
	Desired-Result Techniques Focus on a Specific Decision or Document
	There Are Also Glass Box Techniques, Such As...
	What's Different About Glass Box Tests?
	Coverage-Based Techniques Focus on What Gets Tested
	Function Testing
	Feature Integration Testing
	Tours
	Equivalence Class Analysis
	Boundary Testing
	Best Representative Testing
	Domain Testing
	Test Idea Catalogs
	Multivariable Testing
	Logical Expressions
	State-Model-Based Testing
	User Interface Testing
	Specification-Based Testing
	Requirements-Based Testing
	Compliance-Driven Testing
	Configuration Coverage
	Localization Testing

	Tester-Based Techniques Focus on Who Does the Testing
	User Testing
	Alpha Testing
	Beta Testing
	Bug Bashes
	Subject-Matter Expert Testing
	Paired Testing
	Eating Your Own Dogfood
	Localization Testing

	Risk-Based Techniques Focus on Potential Problems
	Boundary Testing
	Quicktests (Risk-Based Testing)
	Constraints
	Logical Expressions
	Stress Testing
	Load Testing
	Performance Testing
	History-Based Testing
	Risk-Based Multivariable Testing
	Configuration/Compatibility Testing
	Interoperability Testing
	Usability Testing
	Long-Sequence Regression

	Activity-Based Techniques Focus on How You Do the Testing
	Guerilla Testing
	All-Pairs Testing
	Random Testing
	Use Cases
	Scenario Testing
	Installation Testing
	Regression Testing
	Long Sequence Testing
	Dumb Monkey Testing
	Performance Testing

	Evaluation-Based Techniques Focus on Your Oracle
	Function Equivalence Testing
	Mathematical Oracle
	Constraint Checks
	Self-Verifying Data
	Comparison With Saved Results
	Comparison With Specifications or Other Authoritative Documents
	Diagnostics-Based Testing
	Verifiable State Models

	Desired-Result Techniques Focus on a Specific Decision or Document
	Build Verification
	Confirmation Testing
	User Acceptance Testing
	Certification Testing

	Review

	Lecture 2
	Course Overview: Fundamental Topics
	Today’s Readings
	Test Design
	Test Strategy
	What's a Test Case?
	Test Cases
	Testing Strategy
	Attributes of “Good“ Tests
	Everyone Tests in a Context
	Testing Strategy in Context
	Common Information Objectives
	Strategy and Design
	Techniques and Strategy
	Risk
	Risk-Based Testing
	Different Approaches to Risk
	Quicktests?
	Classic Quicktest: Shoe Test
	Another Classic Example of a Quicktest
	Why Are Quicktests Black Box?
	Common Ideas for Quicktests
	User Interface Design Errors
	Boundaries
	Overflow or Underflow
	Invalid Calculations & Operations
	Initial States
	Initial States Examples
	Modified Values
	Control Flow
	Sequences
	Messages
	Timing, Including Race Conditions
	Interference Tests
	Interference Tests: Interrupts
	Interference Tests: Change
	Interference Tests: Cancel
	Interference Tests: Pause
	Interference Tests: Swap
	Interference Tests: Compete
	Error Handling
	Failure Handling
	File-System
	Load
	Configuration Problems
	Multivariable Relationships
	Quicktests Have Limits
	Summary: Quicktests & Risk-Based Testing
	Different Approaches to Risk
	Guidewords
	Heuristic Test Strategy Model
	HTSM: Project Environment
	HTSM: Product Elements
	HTSM: Quality Criteria
	Using HTSM to Guide Testing
	Different Approaches to Risk
	Failure Mode Lists/Risk Catalogs/Bug Taxonomies
	Our First List of Quicktests Was Derived From a Bug Catalog
	Example: Portion of Risk Catalog for Installer Products
	Building a Failure Mode Catalog
	Failure Mode & Effects Analysis
	Using Failure Mode Catalogs
	Different Approaches to Risk
	Project-Level Risk Analysis
	Classic, Project-Level Risk Analysis
	Project Risk Heuristics:Where to Look for Errors
	Review

	Lecture 3
	Course Overview: Fundamental Topics
	Today’s Readings
	What Is Spec-Based Testing?
	Critical Questions
	What Is the Specification?
	Implicit Specifications
	Examples of Implicit Specifications
	Critical Questions
	Why Did They Create It?
	Critical Questions
	Who Are the Stakeholders?
	Critical Questions
	What Are You Trying to Learn or Achieve With the Spec?
	Critical Questions
	Consequences of Nonconformity?
	Critical Questions
	What Claims Does the Spec Make?
	Active Reading (Example)
	Using the Heuristic Test Strategy Model for Active Reading
	Using HTSM for Active Reading
	Using Bach's HTSM for Active Reading
	Concept Maps
	Create a Map of This Model
	Project Environment Map
	Product Elements Map
	Quality Criteria Map: Operational Criteria
	Quality Criteria Map: Development Criteria
	The Full Model Has Depth
	You Can Customize the Model
	So Add a Level to the Map
	You Can Customize the Model
	Using HTSM for Active Reading
	Critical Questions
	Ambiguity Analysis
	Critical Questions
	Driving Tests From the Spec
	Traceability Matrix
	Review

	Lecture 4
	Course Overview: Fundamental Topics
	Today’s Readings
	Scenarios for Beginners
	Benefits of Use-Case Based Testing
	Evaluating This Approach
	The Scenario Concept
	Kahn's List of Benefits of Scenario-Based Thinking
	Exemplars From Other Fields
	The Postage Stamp Bug
	The Software Scenario
	Attributes of Scenario Tests
	What Testers Learn From Scenarios
	Approaches to Combination Testing
	17 Lines of Inquiry for Suites of Scenarios
	Consider a Hypothetical Example
	17 Lines of Inquiry for Suites of Scenarios
	To Create a Suite of Scenarios
	Motivating Scenarios
	To Create a Suite of Scenarios
	Scenario Complexity
	To Create a Suite of Scenarios
	Practical Tips for Describing the Scenario
	Scenarios & Requirements Analysis
	Coverage
	Reusing Scenarios
	Generalizing...
	Two Examples of Test Techniques
	Techniques Differ in Core Attributes of “Good“ Tests
	Power
	Validity
	Value
	Credible
	Representative
	Non-Redundant
	Motivating
	Performable
	Reusable
	Maintainable
	Information Value
	Coverage
	Easy to Evaluate
	Supports Troubleshooting
	Appropriately Complex
	Accountable
	Affordability
	Opportunity Cost
	Review (1)
	Review (2)

	Lecture 5
	Course Overview: Fundamental Topics
	Today’s Readings
	Today's Learning Objectives
	Opening Example
	The Problem You Have to Solve
	Domain Definitions
	Equivalence
	Boundary Cases
	Check the Invalid Values
	The Classic Boundary/Equivalence Class Table
	Don't Do This
	Do This
	Considering the Consequences
	Test of Resizing a Slide That Has Text Only
	Test Resizing a Slide With a Table
	Test Resizing a Slide With a Graphic
	Test Resizing a Slide With an Imported Table
	Tests of Resizing
	Testing for Consequences
	Summary to This Point
	Definitions
	Primary Dimension of a Variable
	Secondary Dimensions
	Secondary Dimensions on the Classical Table
	Some Primary Dimensions Are Not Appropriate for Domain Testing
	Secondary Dimensions on the Classical Table
	Choosing Boundaries
	Multiple Valid Classes
	Hidden Boundaries
	Equivalence Is Risk-Based
	Best Representative
	Non-Ordered Variables
	In Summary: Equivalence Classes and Representative Values
	Summary of Our Process (So Far)
	The Myers Example
	Common Test Ideas for Page Width
	A New Table: Risk/Equivalence
	Risk/Equivalence Analysis
	Adding Expected Results to the Tables
	Comparing the Tables
	Result Variables
	The Analysis (Result Variable)
	Result Variables: Generalizing the Notation
	Result Variables: A 4-Step Summary
	Looking Ahead at Multi-Dimensional Variables
	Summary: A Schema for Domain Testing
	Closing Thoughts

	Lecture 6
	Course Overview: Fundamental Topics
	Today’s Readings
	Independent Variables: The Page Setup Example
	What Should You Test Together, and Why?
	What Values Should You Test?
	Page Width & Page Height
	Page Width, Page Height & Page Number
	Combination Chart
	Combination Coverage: All Singles
	Combination Coverage: All Pairs
	Combination Coverage: All Triples
	Combination Coverage: All N-tuples
	Configuration Testing: Independent Variables
	Setting Up for Combination Testing
	Abbreviations of Our Variables
	Setting Up for Combination Testing
	All Singles
	All Pairs
	Greetings From Open Office Impress
	Let’s Put a Table on the Slide
	Setting Up for Combination Testing
	Add Some Text
	Combinations
	Create the Combination Table
	Add the Next Variable
	Some Terminology
	Terminology: Exhaustive Versus Equivalence
	Some Terminology
	3-Variable Example
	Weak Robust Equivalence
	Weak Robust Equivalence Revised
	Weak Normal Equivalence
	Strong Normal Equivalence
	Strong Robust Equivalence
	What Are the Risks?
	Consequences, Consequences
	Independent Versus Non-Independent
	What If They Aren’t Independent?
	Another Variable With Components That Constrain Each Other: Date
	Back to the Open Office Table
	These Are Not Independent
	More Non-Independence
	Open Questions
	Interdependence of Several Variables
	Page Size and Margins
	Background Color or Graphics
	Background Graphics Are Constrained by Page Dimensions
	Can You List the Relevant Variables?
	How Many Variables Are on This Page?
	The Number of Variables on This Page Depends on How Many Columns You Choose
	Last Panel
	Exploring Related Variables
	Variable Relationships Table
	Multivariable Relationships
	Variable Relationships
	Approaches to Combination Testing
	Mechanical Combinations
	Risk-Based Combination
	Scenario-Based Combination
	Review of Lecture 6

	References
	Active reading
	All-pairs testing
	Alpha testing
	Ambiguity analysis
	Best representative testing
	Beta testing
	Boundary testing
	Bug bashes
	Build verification
	Calculations
	Combinatorial testing
	Concept mapping
	Concept mapping tools
	Configuration coverage
	Configuration/compatibility testing
	Constraint checks
	Constraints
	Diagnostics-based testing
	Domain testing
	Dumb monkey testing
	Eating your own dog food
	Equivalence class analysis
	Experimental design
	Exploratory testing
	Failure mode analysis
	Feature integration testing
	Function testing
	Function equivalence testing
	Functional testing below the GUI
	Guerilla testing
	Guidewords
	Installation testing
	Interoperability testing
	Load testing
	Localization testing
	Logical expression testing
	Long-sequence testing
	Mathematical oracle
	Numerical analysis
	Paired testing
	Pairwise testing
	Programming or software design
	Psychological considerations
	Quicktests
	Random testing
	Regression testing
	Requirements-based testing
	Risk-based testing
	Rounding errors
	Scenario testing
	Self-verifying data
	Specification-based testing
	State-model-based testing
	Stress testing
	Task analysis
	Test design/test techniques
	Test idea catalogs
	Testing skill
	Tours
	Usability testing
	Use-case based testing
	User interface testing
	User testing

