
1Copyright © 2021 AltomLecture 1 - Basic Concepts

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Copyright © 2021 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Black Box Software Bug Advocacy
Lecture 1
Basic Concepts

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

2Copyright © 2021 AltomLecture 1 - Basic Concepts

The practices recommended and discussed in this course are useful for an introduction to testing, but more experienced testers

will adopt additional practices. I am writing this course with the mass-market software development industry in mind.

Mission-critical and life-critical software development efforts involve specific and rigorous procedures that are not described in

this course.

Some of the BBST-series courses include some legal information, but you are not my legal client. I do not provide legal advice in

the notes or in the course. If you ask a BBST instructor a question about a specific situation, the instructor might use your

question as a teaching tool, and answer it in a way that s/he believes would “normally” be true but such an answer may be

inappropriate for your particular situation or incorrect in your jurisdiction. Neither I nor any instructor in the BBST series can

accept any responsibility for actions that you might take in response to comments about the law made in this course. If you

need legal advice, please consult your own attorney.

Notice

3Copyright © 2021 AltomLecture 1 - Basic Concepts

The BBST lectures evolved out of courses co-authored by Kaner & Hung Quoc Nguyen and by Kaner & Doug Hoffman. We then

co-taught and evolved the course with James Bach and Michael Bolton and we co-taught and evolved it again with Altom and its

instructors. The online adaptation of BBST was designed primarily by Rebecca L. Fiedler.

After being developed by practitioners, the course evolved through academic teaching and research largely funded by the

National Science Foundation. The Association for Software Testing served as our learning lab for practitioner courses. We also

evolved the 4-week structure with AST. We could not have created this series without AST’s collaboration. Since 2014, Altom has

been offering the course commercially. Starting with 2019, Altom has been maintaining and updating the course materials.

Many Thanks...

4Copyright © 2021 AltomLecture 1 - Basic Concepts

We also thank Jon Bach, Scott Barber, Bernie Berger, Ajay Bhagwat, Rex Black, Jack Falk, Elizabeth Hendrickson, Kathy Iberle, Bob

Johnson, Karen Johnson, Brian Lawrence, Brian Marick, John McConda, Melora Svoboda, dozens of participants in the Los Altos

Workshops on Software Testing, the Software Test Managers’ Roundtable, the Workshops on Heuristic & Exploratory

Techniques, the Workshops on Teaching Software Testing, the Austin Workshops on Test Automation and the Toronto

Workshops on Software Testing and students in AST courses for critically reviewing materials from the perspective of

experienced practitioners.

We also thank the many students and co-instructors at Florida Tech, who helped us evolve the academic versions of this course,

especially Pushpa Bhallamudi, Walter P. Bond, Tim Coulter, Sabrina Fay, Ajay Jha, Alan Jorgenson, Kishore Kattamuri, Pat McGee,

Sowmya Padmanabhan, Andy Tinkham, and Giri Vijayaraghavan.

We also thank all instructors, practitioners and Altom employees who contribute to updating and developing new content for

this course series, especially Ancuța Bodnărescu, Alexandra Casapu, Oana Casapu, Ru Cindrea, Gabriel Dobrițescu, Zoltán

Molnár, Ray Oei, and Dolores Pente.

Many Thanks...

5Copyright © 2021 AltomLecture 1 - Basic Concepts

 1. Basic Concepts

Course Overview: Fundamental Topics

 2. Effective Advocacy: Making People Want to Fix the Bug

 3. Writing Clear Bug Reports

 4. Anticipating and Dealing With Objections: Irreproducible Bugs

 5. Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

 6. Credibility and Influence

6Copyright © 2021 AltomLecture 1 - Basic Concepts

The Bug Advocacy Lectures

7Copyright © 2021 AltomLecture 1 - Basic Concepts

How should we:

1. Balance time spent:

○ improving our understanding and communication of our

findings

versus

○ finding new bugs?

2. Deal with conflicts of interest among stakeholders?

3. Present problems to people under stress?

4. Preserve our credibility?

5. Preserve our integrity?

Five Key Challenges

8Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow
How Workgroups Handle Bug Reports

Close the bug report

Testers retest
the bugs

Someone reports a bug

Programmer sends the bug
to the PM/PO

PM/PO reviews
the bug report

CCB reviews the
bug report

Programmer
looks into it

Programmer fixes it

Someone confirms the bug
and adds more info

Programmer marks the bug
fixed in the bug tracking system

PM/PO decides not to fix it

CCB defers/rejects the bugs

9Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow

Someone reports a bug

● A tester finds a bug, investigates it, and reports it

● Non-testers report bugs too.

10Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow

Someone reports a bug

Someone confirms the bug
and adds more info

Someone replicates the bug, to confirm that

● it is a real problem

● the steps in the report accurately describe how to reproduce it.

Confirmation is essential for bugs reported by non-testers, because those reports are often

incomplete.

11Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow
Someone reports a bug

Programmer sends the bug to
the Project Manager/Product

Owner

Programmer
looks into it

Programmer fixes it

Someone confirms the bug
and adds more info

A programmer looks into it and

● fixes it,

● decides that a fix will take so long it needs management approval,

● recommends that it be deferred (fix it later), or

● determines (argues) it is not a bug.

The process of deciding which bugs to fix and which to leave in the product is called bug triage.

12Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow
Someone reports a bug

Programmer sends the bug
to the PM/PO

PM/PO reviews
the bug reportProgrammer

looks into it

Programmer fixes it

Someone confirms the bug
and adds more info

PM/PO decides not to fix it

Project manager/product owner (PM/PO) may:

● prioritize the unfixed bugs,

● ask for more information or

● decides not to fix it either because “it’s a feature” or too expensive.

The Project Manager (PM) has the authority to decide what order the project’s tasks are done and

which tasks are dropped if the project runs out of time. In Agile projects, the Product Owner (PO)

usually prioritizes and/or drops backlog items and bugs based on direct feedback from the customer.

13Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow
Someone reports a bug

Programmer sends the bug
to the PM/PO

PM/PO reviews
the bug report

CCB reviews
the bug report

Programmer
looks into it

Programmer fixes it

Someone confirms the bug
and adds more info

PM/PO decides not to fix it

CCB defers/rejects the bugs

● The project team (representatives of the

key stakeholder groups) reviews bugs that

seem expensive or that are deferred.

● This is often called the triage team or the

Change Control Board (CCB)

● The CCB makes “final” decisions to defer

or reject unfixed bugs.

● In Agile projects, the CCB might be

replaced by the PO or by the customer

themselves, who can make final decisions

about bugs based on demo sessions or

triage meetings with the whole team.

Few (or no) companies fix every bug they

find. What separates great companies from

irresponsible ones is the level of care and

insight in their triage process.

14Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow

Close the bug report

Testers retest
the bugs

Someone reports a bug

Programmer sends the bug
to the PM/PO

PM/PO reviews
the bug report

CCB reviews the
bug report

Programmer
looks into it

Programmer fixes it

Someone confirms the bug
and adds more info

Programmer marks the bug
fixed in the bug tracking system

PM/PO decides not to fix it

CCB defers/rejects the bugs

The test group retests the fixed bugs:

● Did the programmer actually fix the bug?

○ Just this particular bug or similar bugs

in other parts of the code?

○ Just the reported symptoms or the

full underlying problem?

● Did the fix cause other side effects?

Whenever you check a bug fix, vary your

tests to explore the scope of the fix.

15Copyright © 2021 AltomLecture 1 - Basic Concepts

Summary of a Bug Workflow

Close the bug report

Testers retest
the bugs

Someone reports a bug

Programmer sends the bug
to the PM/PO

PM/PO reviews
the bug report

CCB reviews the
bug report

Programmer
looks into it

Programmer fixes it

Someone confirms the bug
and adds more info

Programmer marks the bug
fixed in the bug tracking system

PM/PO decides not to fix it

CCB defers/rejects the bugs

Retest bugs marked as deferred,

irreproducible or rejected and

● agree to close them, or

● appeal the no-fix decision: add new

information to the bug report and ask the

project manager and the triage team to

fix the bug

Deciding which bug deferrals/rejections to

appeal is a critical task that impacts the

credibility of the test group.

16Copyright © 2021 AltomLecture 1 - Basic Concepts

A bug report is a tool you use to sell the programmer on the idea of

spending her time and energy to fix a bug.

Bug Reports Are a Tester’s
Primary Work Product

17Copyright © 2021 AltomLecture 1 - Basic Concepts

Bug reports are what people outside of the testing group will most

notice and most remember of your work.

The quality of your communication drives the success of your

reports.

It is very important to find a link between the problem you see and

the objectives and concerns of the stakeholders who will base

decisions on your reports.

Bug Advocacy?

“The best tester isn’t the

one who finds the most

bugs or embarrassed the

most programmers. The

best tester is the one

who gets the most bugs

fixed.”

Kaner, C., Falk, J., &

Nguyen, H.Q. (2nd

Edition, 1999). Testing

Computer Software.

18Copyright © 2021 AltomLecture 1 - Basic Concepts

Common Answers (Software Error)

Anything that causes

an unnecessary or

unreasonable

reduction of the quality

of a software product.

● Doesn’t match specifications or written

requirements

● Doesn’t match documentation

● Coding error (doesn’t do what the

programmer intended)

● Doesn’t meet design objectives

● Doesn’t meet company standards

● Doesn’t meet industry standards

● Would embarrass the company

● Makes the product less salable

● Interferes with development, testability

or revision of the product

● Interacts badly with other programs or

components

● Generates incorrect results

● Generates confusing results

● Wastes the time of a user

● Any failure (misbehavior)

● Underlying error that causes a

failure

● Anything that, if reported, would

lead to a code change

● Failure to meet reasonable

expectations of a user (Myers)

● Failure to meet reasonable

expectations of a stakeholder

● A bug is something that bugs

somebody (Bach)

19Copyright © 2021 AltomLecture 1 - Basic Concepts

Here’s a defective program

Consider an Example

What is the

● bug?

● failure?

● fault?

● error?

● critical condition?

● defect?

1
2
3

INPUT A
INPUT B
PRINT A/B

The user enters 5 (for A) and 0 (for B) and the program says:

ARGH! ?DIVby0! I have a headache!

and then halts.

20Copyright © 2021 AltomLecture 1 - Basic Concepts

IEEE Standard 610.12-1990 defines ERROR as:

“(1) The difference between a computed observed or measured value (1) The difference

between a computed, observed, or measured value or condition and the true, specified,

or theoretically correct value or condition. For example, a difference of 30 meters

between a computed result and the correct result.

(2) An incorrect step, process, or data definition. For example, an incorrect instruction in a

computer program.

(3) An incorrect result. For example, a computed result of 12 when the correct result is 10.

(4) A human action that produces an incorrect result. For example, an incorrect action on

the part of a programmer or operator.

Note: While all four definitions are commonly used, one distinction assigns definition 1 to

the word ‘error,’ definition 2 to the word fault,’ definition 3 to the word ‘failure,’ and

definition 4 to the word ‘mistake.’ ”

What’s the “Standard” Answer?

21Copyright © 2021 AltomLecture 1 - Basic Concepts

IEEE Standard 610.12-1990 defines FAULT as:

“An incorrect step, process, or data definition in a computer program. Note: This definition

is used primarily by the fault tolerance discipline. In common usage, the terms ‘error’ and

‘bug’ are used to express this meaning.”

I’ve also seen “fault” used to refer to the behavioral failure.

IEEE Standard 610.12-1990 defines FAILURE as:

“The inability of a system or component to perform its required functions within specified

performance requirements. Note: The fault tolerance discipline distinguishes between a

human action (a mistake), its manifestation (a hardware or software fault), the result of

the fault (a failure), and the amount by which the result is incorrect (the error).”

What’s the “Standard” Answer?

22Copyright © 2021 AltomLecture 1 - Basic Concepts

The Usage in THIS Course

● An error (or fault) is something wrong with the product,

such as a design flaw, an incorrect internal data value, or

a coding error.

● The failure is the program’s actual incorrect or missing

behavior.

23Copyright © 2021 AltomLecture 1 - Basic Concepts

● An error

● won’t yield a failure

● without the conditions that trigger it.

○ Example, if the program yields 2+2=5 only the 10th time

you use it, you won’t see the error before or after the

10th use.

● In a test that yields a failure, a critical condition is a data

value or step that is essential for revealing the problem)

The Usage in THIS Course

Nancy Leveson (1995) draws useful distinctions between errors, hazards, conditions, and failures in Safeware.

24Copyright © 2021 AltomLecture 1 - Basic Concepts

● For example the program responds a little example, the

program responds a little more slowly than usual or a small

part of the screen briefly flickers.

● Minor symptoms sometimes get worse (steadily deteriorating

performance). Minor symptoms can be important clues for

troubleshooting hard-to-reproduce bugs.

● Sudden and catastrophic bridge collapses and building failures

usually are preceded by many innocuous "cosmetic" cracks.

You can't know how bad a bug is just from a symptom.

The Definitions in This Course

A symptom is a behavior that suggests an underlying problem.

25Copyright © 2021 AltomLecture 1 - Basic Concepts

However, because this term has significant legal implications, it

should be used rarely, with great care, and preferably, in accordance

with the local laws and company standards that were reviewed by

counsel.

The Definitions in This Course

Many lawsuits

rest on the

question, “Can we

prove this product

was defective?”

The word defect might refer to the failure or to the

underlying error.

26Copyright © 2021 AltomLecture 1 - Basic Concepts

The Definitions in This Course

Not every

limitation on

quality is a bug.

Software Error (or Bug) is anything that causes an unnecessary

or unreasonable reduction of the quality of a software product.

27Copyright © 2021 AltomLecture 1 - Basic Concepts

The Definitions in This Course

Not every

limitation on

quality is a bug.

28Copyright © 2021 AltomLecture 1 - Basic Concepts

● Conformance with requirements (Philip Crosby)

○ Actual requirements, which may or may not be what’s written down.

● The totality of features and characteristics of a product that bear on its ability to

satisfy a given need (American Society for Quality)

● The total composite product and service characteristics of marketing,

engineering, manufacturing and maintenance through which the product and

service in use will meet expectations of the customer (Armand V. Feigenbaum,

Total Quality Control, Fortieth Anniversary Edition)

What Is Quality?
Leading Definitions

Note the absence of

“conforms to

specifications.”

See Ishikawa. (1985).

What Is Total Quality

Control?: The Japanese

Way.

29Copyright © 2021 AltomLecture 1 - Basic Concepts

Joseph Juran distinguished between Customer Satisfiers and

Dissatisfiers as key dimensions of quality:

What Is Quality?

Which is the more

important for quality?

1. happy customers?

2. low rate of

problems?

3. adherence to a

quality

management

process?

“Quality is fitness for use.” (Joseph Juran)

Customer Satisfiers

● the right features

● adequate instruction

Dissatisfiers

● unreliable

● hard to use

● too slow

● incompatible with customer’s

equipment

30Copyright © 2021 AltomLecture 1 - Basic Concepts

All of these attributes tie to value:

Quality Is Multidimensional

● reliability

● usability

● maintainability

● testability

● salability

● functionality/capability

● speed of operation

● scalability

● localizability

● documentability

● trainability

● technical-supportability

31Copyright © 2021 AltomLecture 1 - Basic Concepts

Project Manager/
Product Owner

Quality—According to WHO?

Marketing

Customer Service

User Interface
DesignManufacturing

Black box testing

Content Development

Programming Writing

Glass box testing

Multimedia production

When you sit in a project team meeting, discussing a bug, a new feature, or some other issue in the

project, you must understand that each person in the room has a different vision of what a “quality”

product would be. Fixing bugs is just one issue.

32Copyright © 2021 AltomLecture 1 - Basic Concepts

Different People, Different Quality

If two people differ in

how they perceive what

is valuable or expensive,

they differ in what

drives their perception

of quality from high to

low.

Localization
Manager

A good product is easy to modify for another country, language and
culture. Few experienced localization managers would consider
acceptable a product that must be recompiled or relinked to be
localized.

Tech Writers A good product is easy to explain. Anything confusing, unnecessarily
inconsistent, or hard to describe has poor quality.

Marketing Good products drive people to buy them and encourage their friends
to buy them. Adding desirable new features improves quality.

Customer
Service

Good products are supportable: designed to help people solve their
own problems or to get help quickly.

Programmers Good code is maintainable, easy to understand, fast and compact.

Testers: ??? What do you think ???

33Copyright © 2021 AltomLecture 1 - Basic Concepts

I like Gerald Weinberg’s definition:

So, What IS Quality?

“Quality is value to some person.”

But consider the implications:

● Anything that reduces the value reduces the quality.

● Quality is subjective. What’s valuable for you is maybe not so

valuable for me.

● A bug report can describe a problem that is perceived as serious

by one person and trivial by the other—and both can be right.

● The essence of a good description of the severity of the problem

is the mapping to reduction of stakeholder value.

34Copyright © 2021 AltomLecture 1 - Basic Concepts

(Is this equivalent to “Anything that causes an unnecessary or

unreasonable reduction of the quality of a software product”?)

The Definitions in This Course

“A bug is anything

about the product

that threatens its

value.”

James Bach

Michael Bolton

Software Error (or Bug) is an attribute of a software product

● that reduces its value to a favored stakeholder

● or increases its value to a disfavored stakeholder

● without a sufficiently large countervailing benefit.

35Copyright © 2021 AltomLecture 1 - Basic Concepts

1. A bug report is an assertion that a product could be better than it is.

2. The idea of “better” is subjective—what’s better for one stakeholder might be

worse for another.

3. One reason for the variation is the multidimensionality of every product. A

feature, or a more general attribute of a product, might be more important to

one person than to another. Bugs that weaken the feature (or attribute) are

those more costly to the first person than the other.

4. A bug report is justified if it exposes a problem that does in fact reduce value

for a stakeholder with influence.

Summing Up

36Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Copyright © 2021 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Bug Advocacy
Lecture 2
Effective Advocacy: Making People Want to Fix the Bug

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

37Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Course Overview: Fundamental Topics

 1. Basic Concepts

 2. Effective Advocacy: Making People Want to Fix the Bug

 3. Writing Clear Bug Reports

 4. Anticipating and Dealing With Objections: Irreproducible Bugs

 5. Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

 6. Credibility and Influence

38Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

● Client experienced a wave of serious product recalls (defective firmware)

○ Why were these serious bugs not found in testing?

■ They WERE found in testing AND reported

○ Why didn’t the programmers fix them?

■ They didn’t understand what they were reading

○ What was wrong with the bug reports?

■ The problem is that the testers focused on creating

reproducible failures, rather than on the quality of their

communication.

● Looking over 5 years of bug reports, I could predict fixes better by

clarity/style/attitude of report than from severity.

It’s Not Only About Reporting the Bug

39Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

1. The more time you spend on each bug, the fewer bugs you

have time to find and report.

2. If you spend lots of troubleshooting time getting more

information for the programmers, how much time does this

save them?

○ If an hour of your investigative time saves the programmer

10 minutes, is this a cost-effective allocation of resources?

But There Are Tradeoffs

At some companies,

testers report bugs as

quickly as they can,

providing extra

troubleshooting only

when the programmers

dismiss the bug or can’t

find it.

40Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Time is in short supply. People are overcommitted.

If you want someone to fix your bug, you have to make them

want to do it.

● Your bug? (Someone else made the bug, but once you find it,

it’s yours too.)

The art of motivating someone to do something that you want them

to do is called sales.

Bug Advocacy = Selling Bugs

Your task is to

communicate

effectively with human

decision-makers.

Purely technical

cost/benefit tradeoffs

miss the bigger picture.

41Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

It’s not just about reporting bugs.

● It’s about presenting a bug in its strongest (honestly described)

light.

● It’s about presenting a bug in a way that connects with the

concerns of stakeholders with influence—and if one particular

stakeholder will be most affected, by making sure she gets the

message clearly.

● It’s about communicating so well that your report enables

good decision-making.

Bug Advocacy

The best tester isn’t the

one who finds the most

bugs or embarrasses

the most

programmers.

The best tester is the

one who gets the most

THE RIGHT bugs fixed.

42Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Sales revolves around two fundamental objectives:

● Motivate the buyer

○ Make her WANT to fix the bug.

● Overcome objections

○ Get past her reasons and excuses for not fixing the bug.

How To Sell Bugs

Today we focus on

writing a

motivating report.

Later, we consider

the objections.

43Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Some programmers want to fix a bug if:

● It looks really bad.

● It will affect lots of people.

● Getting to it is trivially easy.

● It is a breach of contract.

● A bug like it has embarrassed the company, or a competitor.

● It looks like an interesting puzzle and piques the programmer’s curiosity.

● Management (that is, someone with influence) has said that they really want it

fixed.

● You said you want this particular bug fixed, and the programmer likes you,

trusts your judgment, is susceptible to flattery from you, or owes you a favor.

Motivating the Bug Fixer

44Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

When you run a test and find a failure, you’re looking at a symptom,

not at the underlying error.

You may or may not have found the best example of a failure that

can be caused by the underlying fault.

Therefore you should do some follow-up work to try to prove that a

coding error:

● is more serious than it first appears.

● is more general than it first appears.

Researching the Failure Conditions

45Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

● Error: the mistake in the code

● Failure: the misbehavior of the program

● Critical conditions: the data values, environmental

conditions, and program steps that are essential for eliciting

the failure

● Symptom: a minor misbehavior that warns of an error that

can cause a much more serious failure

Refresher on Terminology

46Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Look for follow-up errors.

When a program fails because of a coding error:

● The program is in a state that the programmer did not intend and probably did

not expect.

● There might also be data with “impossible” or unexpected values.

The program is now in a vulnerable state.

● Even more vulnerable because error-handling code is often buggy.

Keep testing. The real impact of the underlying fault might be much worse, such as

system crash or corrupted data.

More Serious Than It First Appears

At the start of

follow-up testing,

consider whether

you need to conserve

your state

(and how to do it).

47Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

I do four types of follow-up testing:

1. Vary my behavior

○ change what I do as I test

2. Vary the options and settings of the program

○ change settings of the application under test

3. Vary data that I load into the program

○ different startup files or other data not directly involved

in the test

4. Vary the software and hardware environment

○ e.g. operating system, peripherals, external software that

interacts with this application

Follow-Up Testing for Severity

48Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Example: A program unexpectedly but slightly scrolls the display

when you add two numbers:

● The task is entering numbers and adding.

● The failure is the scrolling.

Follow-Up 1: Vary Your Behavior

49Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Try simple repetition.

● Bring it to the failure case again (and again). If the program

fails when you do X, then do X many times. Is there a

cumulative impact?

Look at timing.

● Enter the numbers more quickly or change speed of your

activity in some other way.

Follow-Up 1: Vary Your Behavior

50Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Try things related to the task that failed.

● Try tests that:

○ affect adding or

○ that affect the numbers

○ maybe try negative numbers, for example.

● Try the program’s multiply feature (it probably uses much of

the same code as the add feature).

Follow-Up 1: Vary Your Behavior

51Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Try combinations.

● If the failure is, “Do X, see the scroll”

○ Do Y then do X

○ Do X, then Z, then X

○ (If the scrolling gets worse or better in one of these tests,

follow that up, you’re getting useful information for

debugging.)

Combinations might involve features (Y, Z) that are:

● Related to the feature under test (adding and display)

● Or to the failure (scrolling)

Follow-Up 1: Vary Your Behavior

52Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Try things related to the failure (scrolling).

● Do huge numbers or sums change the amount of scrolling?

● Try scrolling first, then adding. Try repainting the screen

(scrolling is a screen-thing), then adding. Try resizing the

display of the numbers, then adding.

Follow-Up 1: Vary Your Behavior

53Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

And try the usual exploratory attacks (quicktests).

Continuing the example of unexpected scrolling after adding:

● Can we add more than two numbers? What’s the maximum?

● Try the biggest numbers we can add

● Try some interference tests. Stop or pause the program or

swap it just as the program is failing.

● Or try it while the program is doing a background save. Does

that cause data loss corruption along with this failure?

Follow-Up 1: Vary Your Behavior

See Whittaker, J., (2002), How to Break Software: A Practical Guide to Testing

54Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Change the state of the program under test.

● does that change the failure?

In this case, keep the steps that demonstrate the failure the same.

Change the program, not what you do with the program.

For example,

● Change the values of persistent variables (any program

options that seem potentially relevant)

● Change how the program uses memory (if that’s a program

setting)

Follow-Up 2: Vary Options & Settings

55Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Change data that I load into the program.

● different startup files

● or other data not directly involved in the test

(If I’m varying the data directly used by the program, that’s probably

part of Follow-Up 1: Changing what I do)

Follow-Up 3: Vary Data Files

56Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

You might trigger a more serious failure if you replicate with

less memory, a different printer, more device interrupts, etc.

● If it might involve timing, use a really slow (or fast) computer or

peripheral.

● In our scrolling example, consider different settings on a wheel

mouse that does semi-automated scrolling.

● If there is a video problem, try other resolutions on the video

card. Try displaying MUCH more (less) complex images. If a

recent OS update changed video handling, try the old OS

version.

Follow-Up 4: Vary the Configuration

57Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Note that we are not:

● checking standard configurations

● trying to understand how broad the range of circumstances is

that produces the bug.

What we’re asking is whether there is a particular configuration that

will demonstrate this bug more spectacularly.

Follow-Up 4: Vary the Configuration

58Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

When you run a test and find a failure, you’re looking at a symptom,

not at the underlying error.

You may or may not have found the best example of a failure that

can be caused by the underlying fault.

Therefore you should do some follow-up work to try to prove that a

defect:

● is more serious than it first appears.

● is more general than it first appears.

Researching the Failure Conditions

"Is it more general?”

means, “Will more

people see it, more

often, or under a wider

range of circumstances,

than the first failure we

saw suggests?"

59Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Dealing with extreme-value tests:

● We test at extreme values because these are the most likely

places to show a defect.

● Once we find the defect, we don’t have to stick with extreme

value tests.

● We can look for the same failure under more general

conditions.

Researching the Failure Conditions

"Is it more general?”

means, “Will more

people see it, more

often, or under a wider

range of circumstances,

than the first failure we

saw suggests?"

60Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Uncorner your corner cases.

● Corner case—a perceived-to-be ridiculously extreme test

To uncorner an extreme value test, try mainstream values.

● These are values (e.g. mid-range) that the program should

handle easily.

● If you replicate the bug, write it up with the mainstream

settings. This will be a very credible bug report.

Showing a Bug Is More General

A true “corner case”

is a test that uses

extreme values from

at least two variables

at the same time.

(This may be a

perfectly plausible

test.)

61Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

If mainstream values don’t yield failure, troubleshoot around the

extremes.

● Is the bug tied to this one extreme case?

● Is there a small range of cases?

● In your report, identify the narrow range that yields failures.

● A narrow-range bug might be deferred. That might be the right

decision. Other bugs might be more critical.

Corner Cases

The best tester isn’t the

one who finds the most

bugs or embarrasses

the most

programmers.

The best tester is the

one who gets the most

THE RIGHT bugs fixed.

62Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

● Sometimes, it’s too hard to retest a corner case.

○ Example: customer-reported failure on a configuration you don’t have in

the lab (common with mainframes)

● Sometimes, you can only trigger the failure with an extreme case, but you think

there is a more general problem, you just don’t know how to prove it.

● Ask the programmer who recommends deferral:

○ Do you know the CAUSE of this?

○ Do you know the deferral is safe?

● The fact is, they have better diagnostics. Sometimes, the project team has to

rely on them, not you.

If You DO Have to Defend a Corner Case

63Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

When you run a test and find a failure, you’re looking at a symptom,

not at the underlying error.

You may or may not have found the best example of a failure that

can be caused by the underlying fault.

Therefore you should do some follow-up work to try to prove that a

defect:

● is more serious than it first appears.

● is more general than it first appears.

Researching the Failure Conditions

Another more

kind of generality:

“How many

systems does this

run on?”

64Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Question: How many programmers does it take to change a light

bulb?

Answer: What’s the problem? The bulb at my desk works fine!

Bugs that don’t fail on the programmer’s machine are much less

credible (to that programmer).

If a bug is configuration dependent, set the programmer’s

expectations:

● Say that it only happens on some systems.

● Describe the relevant configuration variables that you know

about.

Look for Configuration Dependence

When a programmer

tests a bug she knows is

configuration-

dependent, if it doesn’t

fail on her machine,

she’ll know that she

should try it on a

different one.

65Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Does this failure happen on

● all systems that can run this program?

● all systems that run this program on this operating system?

● all systems that run this program on this operating system

with this much memory, that kind of display, this version

of the video driver, a firewire drive connected, that

firewall, and this virus checker running?

A failure that shows up on most systems will be seen as more

important than one that will show up on only very few.

Configuration Dependence

Many errors, such as

design errors, are

obviously

configuration-

independent and so

there is no point

running configuration

tests on them.

66Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

It’s common to test on 2 machines, Machines 1 and 2.

● Machine 1 is your powerhouse: latest processor, updated operating system,

fancy printer, video card, USB devices, huge hard disk, lots of RAM, fast

broadband, etc.

● Machine 2 is the turtle: slower processor, different keyboard, different video

driver, barely enough RAM, slow, small hard drive, slower network connection.

● Many people do most testing on the turtle using the powerhouse for replication

and test design.

● When you find a defect on Machine 2, replicate on Machine 1 (preserving state

on Machine 2).

○ If you get the same failure, write it up.

○ If you don’t get the same failure, you have a configuration-dependent

bug. Now do troubleshooting.

Testing for Configuration Dependence

67Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

When you test with two machines, you can check your report while

you write it.

● Write the steps, one by one, on the bug report form at

Machine 1.

● As you write them, try them on Machine 2.

● The final report has been tested. If you follow your steps

literally, then someone else following your steps will probably

get the results (see the bug) you are trying to describe.

It is good general practice to replicate every coding error on a

second system.

Bug Reporting, With 2 Machines

68Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

When you run a test and find a failure, you’re looking at a symptom,

not at the underlying error.

You may or may not have found the best example of a failure that

can be caused by the underlying fault.

Therefore you should do some follow-up work to try to prove that a

defect:

● is more serious than it first appears.

● is more general than it first appears.

One more kind of

generality:

“How new is it?”

Researching the Failure Conditions

69Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

Has this bug been in the program through several releases?

● Check its user-complaint history

● If no one complained, it probably won’t be fixed

Is this bug new?

● Especially important in maintenance updates. Bugs won’t be

fixed unless they were (a) scheduled to be fixed because they

are critical or (b) side effects of the code changes.

● An old bug should be treated as new if it behaves differently or

shows up under new conditions.

Follow-Up: Bug New to This Version?

70Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

● Comparisons with competitors

● Predicted criticisms from the press

● Usability weaknesses

● Lost value because it’s too hard to achieve a benefit that programmers don’t

think is so important

● Predicted support costs

● Other implications for sales, support, legal, etc.

Who is your credible source?

● The person your team believes is the expert is the ideal person to quote (or

have speak).

● Provide data from credible sources.

Adding Information Beyond Test Results

No one expects the

tester to be an expert

in marketing or human

factors - even if you are

an expert - and so

anything you say might

be dismissed as

uninformed opinion.

71Copyright © 2021 AltomLecture 2 - Effective Advocacy: Making People Want to Fix the Bug

1. High impact reporting requires follow-up testing to present the bug in its

strongest light:

○ Look for the most serious failure

○ Check the range of conditions under which it can be replicated

○ Especially for maintenance updates, check whether this bug is a new

side-effect of recent code changes.

2. To further motivate people to fix bugs:

○ Look for market data (impact in the field?). Use credible sources.

○ Manage your relationships with other stakeholders with care.

Summing Up

72Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Copyright © 2021 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Bug Advocacy
Lecture 3
Writing Clear Bug Reports

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

73Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Course Overview: Fundamental Topics

 1. Basic Concepts

 2. Effective Advocacy: Making People Want to Fix the Bug

 3. Writing Clear Bug Reports

 4. Anticipating and Dealing With Objections: Irreproducible Bugs

 5. Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

 6. Credibility and Influence

74Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Testers report bugs into a bug tracking system.

● The system (implicit culture or explicit policies, procedures,

mission) determine such things as:

○ what types of problems they submit

○ what details go into the reports

○ who has access to the data, for what purpose

○ what summary reports and statistics are available

The Bug Tracking System

75Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Having a clear mission is important.

Without one, the system will be called on to do

● Too many things (making bug reporting inefficient)

● Annoying things

● Contradictory things

Mission of Bug Tracking Systems

76Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Given a primary mission, all other uses of the system are secondary

and must be changed or modified if they interfere with the primary

mission.

Examples of issues to consider:

● Auditing

● Tracing to other documents

● Personal performance metrics (reward or punishment)

● Progress reporting

● Schedule reality checking

● Scheduling (when can we ship?)

● Archival bug pattern analysis

Mission of Bug Tracking Systems

Anything that does

not directly flow from

the mission is a side

issue. Anything that

makes achieving the

mission harder is

counterproductive.

77Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

The mission that I prefer is this:

A bug tracking process exists for the purpose of getting the right

bugs fixed.

Mission of Bug Tracking Systems

78Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Given a primary mission, all other uses of the system are secondary and must be

changed or modified if they interfere with the primary mission.

Examples of issues to consider:

● Auditing

● Tracing to other documents

● Personal performance metrics (reward or punishment)

● Progress reporting

● Schedule reality checking

● Scheduling (when can we ship?)

● Archival bug pattern analysis

Anything that does

not directly flow from

the mission is a side

issue. Anything that

makes achieving the

mission harder is

counterproductive.

See Austin, R., (2013), Measuring and Managing Performance in Organizations.

Mission of Bug Tracking Systems

79Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Capture all of the right reports

● Capture all the relevant details

● Encourage clarity and collegiality, cooperation and rational

evaluation, in writing and responding to bugs

● Support dialog (technical discussion, evaluative discussion)

● Allow multiple viewpoints, multiple evaluations

● Accessible to every stakeholder with influence

● Nothing gets swept under the carpet

● Nothing gets accidentally lost

Getting the Right Bugs Fixed

From here,

I assume the

mission is

getting the

right bugs fixed.

80Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

You must either:

● make sure the failure is reproducible by anyone who follows

the steps in your report or

● tell the reader that the problem is configuration-dependent or

intermittent and provide relevant details.

To Report a Bug Well: Replicate

● Replicate

● Isolate

● Maximize

● Generalize

● Externalize

● Neutral tone

81Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● You have a list of the steps you took to show the error. You’re

now trying to shorten the list

● What are the critical conditions?

● Write a report that includes the minimum set of steps needed

to replicate the failure

● Include all the steps needed

● Keep it simple: only one failure per report

● If a sample test file is essential to reproducing a problem,

reference it and attach the test file

To Report a Bug Well: Isolate

● Replicate

● Isolate

● Maximize

● Generalize

● Externalize

● Neutral tone

82Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Try taking out individual steps or small groups of steps and see

whether you still replicate the failure.

● Sometimes it’s not immediately obvious what can be dropped

from a long sequence of steps in a bug.

Isolate the Failure:
Eliminate Unnecessary Steps (1)

The best report

is the one that

reaches the

failure in the

shortest,

simplest set of

steps.

83Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Look carefully for any hint of an error as you take each step. Examples:

○ Error messages (you got a message 10 minutes ago. The program didn’t

fully recover from the error - the problem you see now is caused by that

poor recovery.)

○ Display oddities, such as a flash, repainted screen, cursor that jumps

back and forth, multiple cursors, misaligned text, slightly distorted

graphics, doubled characters, omitted characters, or display droppings

(pixels that are still colored even though the graphic that contained them

was erased or moved).

Isolate the Failure:
Eliminate Unnecessary Steps (2)

Look for symptoms

that provide early

warning of the more

dramatic failure to

follow. The steps that

trigger the symptoms

are usually critical.

84Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Look carefully for any hint of an error as you take each step:

○ Delays or unexpectedly fast responses

○ Noticeable change in memory used

○ Sometimes the first indicator the system is working differently is that it

sounds a little different than normal

○ An in-use light or other indicator that a device is in use goes

unexpectedly on or off

○ Debug messages—turn on your system’s debug monitor (if it has

one)—see if/when a message is sent to it

Isolate the Failure:
Eliminate Unnecessary Steps (3)

85Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Once you find what looks like a critical step, try to eliminate almost

everything else from the bug report.

● Go directly from that step to the one(s) that appear to be the

final trigger(s) for the failure.

If this approach doesn’t work, try taking out individual steps or small

groups of steps more arbitrarily and see whether you still replicate

the failure.

Isolate the Failure:
Eliminate Unnecessary Steps (4)

86Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Reports with two problems:

● Description is longer and harder to follow, and therefore

○ less likely to be addressed and

○ more likely to be misunderstood

● Summary line is often vague (says “fails” instead of describing

the failure)

● Half the report gets fixed and it gets closed

When you report related problems on separate reports, it is a

courtesy to cross-reference them.

Isolate the Failure:
Two Failures ➔ Two Reports

If half the bug

could be fixed

and the other

half not, report

two bugs.

87Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Follow-up testing to see if you can demonstrate a worse failure than

the initial symptom:

● Vary your actions

● Vary the program’s settings

● Vary the stored data you give the program

● Vary the environment

To Report a Bug Well: Maximize

● Replicate

● Isolate

● Maximize

● Generalize

● Externalize

● Neutral tone

88Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Uncorner your corner cases (show it fails (or doesn’t) under

less extreme conditions).

● Show it fails (or doesn’t) on a broad range of systems.

To Report a Bug Well: Generalize

● Replicate

● Isolate

● Maximize

● Generalize

● Externalize

● Neutral tone

89Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Switch focus from the program to the stakeholders

○ What are the consequences of this failure?

○ Is comparative data available?

■ Historical support data for similar bugs?

■ Other historical cost data?

■ Competitors’ problems?

○ Have people written about problems like these in this or other products?

○ What benefits does this failure interfere with?

○ Who would care about this failure and why?

■ Get them to help you understand what this costs them.

To Report a Bug Well: Externalize

● Replicate

● Isolate

● Maximize

● Generalize

● Externalize

● Neutral tone

90Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Make the report easy to understand.

● Keep your tone neutral and nonantagonistic.

● Angry, blaming reports discredit the reporter.

To Report a Bug Well: Neutral Tone

● Replicate

● Isolate

● Maximize

● Generalize

● Externalize

● Neutral tone

91Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Typical Fields in a Problem Report

Problem report number - must be unique Reproducible - yes/no/sometimes/unknown Status - tester fills this in: open/closed

Date reported - date of initial report Release number - like Release 2.0 Resolution - fixed, deferred, etc.

Problem summary (problem title) - one-line
summary of the problem

Severity - assigned by tester,
some variation on small/medium/large

Resolution version - build identifier

Program (or component) name - the visible item
under test

Priority - assigned by programmer/project
manager/product owner

Resolved by - programmer, tester (if withdrawn by
tester), etc.

Report type - e.g. coding error, design issue,
documentation mismatch, suggestion, query

Problem description and how to reproduce it -
step by step reproduction description

Change history - date stamped list of all changes
to the record, including name and fields changed

Version (build) identifier - like version C or version
20000802a

Suggested fix - leave it blank unless you have
something useful to say

Key words - use these for searching later, anyone
can add to key words at any time

Configuration(s) - hardware and software
configurations under which the bug was found and
replicated

Customer impact - often left blank. When used,
typically filled in by tech support or someone else
predicting actual customer reaction (such as
support cost or sales impact)

Resolution tested by - someone checks the bug
and agrees it was fixed, or the non-fix resolution is
defensible. Usually this is the original reporter, or a
tester if originator was a non-tester

Reported by - original reporter’s name. Some
forms add an editor’s name

Assigned to - shows who is currently working on
the bug - it could be a developer working on a fix, a
tester verifying a fix, etc.

Comments - free-form, arbitrarily long field,
typically accepts comments from anyone on the
project until the bug is resolved

92Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

One-line description of the problem, sometimes called the report

title.

● Stakeholders will use it in when reviewing the list of bugs that

haven’t been fixed.

● Many stakeholders spend additional time only on bugs with

“interesting” summaries.

Typical Fields: Problem Summary

The summary

is the most

important part

of the report.

93Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

The ideal summary gives the reader enough information to help her

decide whether to ask for more information. It should follow a

FAILURE-WHEN structure:

● brief description that is specific enough that the reader can

visualize the failure.

● brief indication of the limits or dependencies of the bug (how

narrow or broad are the circumstances involved in this bug?)

● Some other indication of the severity (not a rating but helping

the reader envision the consequences of the bug.)

Typical Fields: Problem Summary

Use a FAILURE –

WHEN structure

94Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

These are common distinctions:

● Coding Error: The program doesn’t do what the programmer expects it to do.

● Design Issue: It does what the programmer intended, but a reasonable

customer might not like it.

● Requirements Issue: The program is well designed and implemented, but

won’t meet some stakeholder’s needs.

● Documentation/Code Mismatch: Report this to the programmer (via a bug

report) and to the writer (usually via a memo or a comment on the manuscript).

● Specification/Code Mismatch: Maybe the spec is right; maybe the code is

right; sometimes they’re both wrong.

Typical Fields: Report Type

This type of

categorization avoids

misunderstandings.

If you’re reporting

design issues (for

example), you don’t

want them misread as

(erroneous) reports of

coding errors.

95Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Enhancement request: A requirements issue--the program

doesn’t meet a need--but the person who labels it an

enhancement request is saying that the stakeholders who set

the budget should expect to pay extra if they want this.

● Scope issue: This project is governed by a contract with another

organization or a negotiated agreement with management that

lays out the tasks of the project. This enhancement request is

“out of scope”—it requires an amendment to that contract.

● Compatibility issue: The misbehavior of the program is blamed

on interaction with other software that this development team

probably doesn’t control.

Typical Fields: Report Type

These are sometimes

recategorizations, assigned

during triage, as ways of

explaining why a bug won’t be

fixed or a schedule/cost target

won’t be met. Sometimes, they

seem more like excuses than

categorizations.

96Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Severity is the reporter’s assessment of the badness of the

bug.

● Some companies use two or three severity fields:

○ the tester’s estimate

○ the project manager’s estimate

○ the estimate of impact on the user (or other stakeholder

impact) from a person who will most bear that cost (e.g.

tech support impact)

● Priority is the project manager’s decision about when the bug

has to be fixed. Many factors, not just severity, drive this

timing.

Typical Fields: Severity vs Priority

There is more

information, and much

more goodwill, if you

let disagreeing staff

each say their piece

without having to

overwrite the

statement/rating of

the other.

97Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● First, describe the problem. What’s the bug? Don’t rely on the

summary to do this -- some reports will print this field without

the summary.

● Next, go through the steps that you use to recreate this bug.

○ Start from a known place (e.g. boot the program) and

○ Then describe each step until you hit the bug.

○ Take it one step at a time.

○ Number the steps.

Typical Fields: Problem Description

The first list

of steps should

describe the

shortest

step-by-step

path to the

failure.

98Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Go through the steps that you use to recreate this bug.

 1. Do this

 2. Do this

 3. Do this ➔ see that

 4. Do this, etc.

You are giving people directions to a bug. Especially in long reports,

people need landmarks. Tell them what they should see, every few

steps or whenever anything interesting happens.

Typical Fields: Problem Description

99Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Describe the erroneous behavior.

○ If necessary, explain what should have happened.

■ Why do you think this is this a bug?

■ Describe what result you expected instead of the

result you got.

Typical Fields: Problem Description

100Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● List the environmental variables (configuration, etc.) that are

not covered elsewhere in the bug tracking form.

● If you expect the reader to have any trouble reproducing the

bug (special circumstances are required), be clear about them.

Typical Fields: Problem Description

101Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Suppose the failure looks different under slightly different

circumstances. Examples:

● The failure won’t show up or is much less serious if you do step X

between step Y and step Z

● The timing changes if you do two additional sub-tasks before

hitting the final reproduction step

● The printer prints different garbage (instead of the garbage you

describe) if you make the file a few bytes longer

Add a section that says “Additional Conditions” and describe, one by

one, in this section the additional variations and the effect on the

observed failure.

Typical Fields: Problem Description

102Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Typical Fields: Suggested Fix

Leave it blank unless you have something useful to say.

103Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Tester fills the status field in:

● Open

● Closed

● Resolved

The project manager owns the resolution field.

Common resolutions include:

● Pending: the bug is still being worked on.

● Fixed: the programmer says it’s fixed. Now you should check it.

● Cannot reproduce: The programmer can’t make the failure happen. You must

add details, reset the resolution to Pending, and notify the programmer.

● Deferred: It’s a bug, but we’ll fix it later.

Typical Fields: Status and Resolution

104Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● As Designed: The program works as it should.

● Need Info: The programmer needs more info from you. She has probably asked

a question in the comments.

● Duplicate: This is a repeat of another bug report (XREF it on this report)

○ I prefer to keep duplicates open until the duplicated bug closes.

○ Others consolidate duplicates and close all but the consolidator.

● Withdrawn: The tester who reported this bug is withdrawing the report.

● INWTSTA: I never want to see this again.

Typical Fields: Resolution

105Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Free-form, arbitrarily long field, typically accepts comments

from anyone on the project until the bug is resolved.

● Questions and answers about reproducibility, and closing

comments (why a deferral is OK, or how it was fixed for

example) go here.

○ Write carefully. Just like e-mail, it’s easy to read a joke or a

remark as a flame. Never flame.

Typical Fields: Comments

106Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

I have a rule:

If I can’t manage the accuracy of a type of data, I don’t

want to record it.

lt’s OK to create fields for other groups to fill out, if they want to fill

them out.

● It’s not OK for testers to create a field for other people to fill

out, if those people:

○ won’t fill them out, or

○ won’t fill them out without nagging.

● Setting ourselves up to be nagging pests affects our general

goodwill and credibility in the development group.

Fields I Avoid: Unreliable Data

Garbage in

Garbage out

107Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

Some groups record the development phase in which the bug was

made and the phase when it was fixed.

● This assumes that development proceeds in phases (waterfall).

It makes much less sense in a spiral or iterative model, when

the staff can make a “requirements” error or “design” error

after they’ve written most of the code.

● Even in a genuinely phased project, it is often difficult

(especially for the test group) to determine when the mistake

was made.

Fields I Avoid: Project Phase

Garbage in

Garbage out

108Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

The tester won’t know where the error is. Is it bad data, a coding error, wrong

algorithm choice, protocol mismatch with an external program?

The debugging programmers figure this out, but will they add the information to the

bug report?

● Some testers attempt to reconstruct this info from source control records. This

risks significant/frequent error.

● If the programmers won’t gladly enter this data, don’t collect it.

Similarly for cost of fixing the bug, do even the programmers know this? Will they

voluntarily write it down?

Fields I Avoid: Root Cause,
Failure Module, Cost

Garbage in

Garbage out

109Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

How much future loss was mitigated by finding and fixing this bug?

● Sometimes, we can estimate this.

○ Some tech support managers can predict, for some bugs,

that a given bug is going to cost $100,000 in tech support

costs.

○ I’ve never met a manager who could do this accurately

for most bugs.

● What should be reported if the support (or other) staff don’t

know or don’t say what the cost will be?

Fields I Avoid: Cost Mitigated

Garbage in

Garbage out

110Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

● Who made the error? A report that names the bad person who

made the bug is going to be taken personally by every

programmer whose name is ever put on a bug report.

● How long did it take to fix the bug?

● How many bugs per week does this person report? or fix?

Let the project manager track his own staff performance in his own

(private) notebook.

If you start counting these things, the people you are tracking will

change their behavior in ways that improve their counts—but not

necessarily ways that benefit the company.

Fields I Avoid: Employee Performance

If the mission of the

system is getting the

right bugs fixed, using

the system for human

performance reports

is a direct conflict.

111Copyright © 2021 AltomLecture 3 - Writing Clear Bug Reports

1. RIMGEN gives you guidance about the types of research that

you can do to improve your bug reports.

2. A good bug tracking system helps us get the right bugs fixed.

Summing Up

112Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Copyright © 2021 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Bug Advocacy
Lecture 4 - Anticipating and Dealing
with Objections: Irreproducible Bugs

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

113Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Course Overview: Fundamental Topics

 1. Basic Concepts

 2. Effective Advocacy: Making People Want to Fix the Bug

 3. Writing Clear Bug Reports

 4. Anticipating and Dealing With Objections: Irreproducible Bugs

 5. Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

 6. Credibility and Influence

114Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Programmers resist spending time on a bug if:

Overcoming Objections

● The programmer can’t replicate the

failure.

● The programmer doesn’t understand the

report.

● It will take too much work to figure out what

the reporter is complaining about and what

steps he actually took.

● It seems unrealistic (e.g. “corner case” or

requires a complex sequence of improbable

steps)

● It’s (allegedly) not a bug, it’s a feature.

● It will take a lot of work to fix the bug or will

introduce too much risk into the code.

● It is perceived as unimportant: No perceived

customer impact, minor failure, unused

feature.

● Management doesn’t care about bugs like this.

● The programmer doesn’t like/trust you

(or the customer who is complaining about the

bug).

115Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Always report non-reproducible failures.

● Identify the problem as non-reproducible

● Describe the failure as precisely as you can

● If you see an error message, copy its words/numbers down exactly

● If the screen changes, note the details of the screen change.

● If you are recording output to other devices or systems, include all messages

(and which things stayed silent)

● Describe the ways you tried to reproduce the failure

These can help the programmer identify specific points in the code that the failure did

or did not pass through.

Non-Reproducible Failures

Always report

non-reproducible

failures, but report

them carefully.

116Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Always provide this information even if it’s not on the form.

● Never call a bug reproducible unless you’ve replicated it.

● In some cases, the appropriate status is “not attempted.”

● If you can’t recreate the bug, say so. Describe your attempts to recreate it.

● If the bug appears sporadically and you don’t yet know why, say “Sometimes”

and explain.

● You may not be able to try to replicate some bugs. Example: customer-reported

bugs where the setup is too hard to recreate.

Can You Reproduce the Problem?

If the tester says a bug

is reproducible

and the programmer

says it’s not, the tester

might have to recreate

it in the presence of

the programmer.

117Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

When you find a bug, preserve the machine’s state. Try to replicate on a different

machine. When you realize you can’t reproduce a bug:

● Write down everything you can remember.

● Do it now, before you forget even more.

● As you write, ask yourself whether you’re sure that you did this step (or saw this

thing) exactly as you are describing it. If not, say so. Draw these distinctions right

away. The longer you wait, the more you’ll forget.

● Maybe the failure was a delayed reaction to something you did before starting

this test or series of tests. Before you forget, note the tasks you did before

running this test.

● Check the bug tracking system. Are there similar failures? Maybe you can find a

pattern.

● Talk to the programmer and/or read the code.

Non-Reproducible Failures

118Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Test script:

● Detailed test description:

○ Everything you do, step by step

○ “Every” response from the program

○ Every data item

○ Any other relevant setup (e.g. test environment)

● BUT, they tend to be:

○ Enormously expensive

○ Ineffective for finding bugs

● And they only mitigate risk of irreproducibility caused by you

forgetting what you actually did

Wouldn’t Test Scripts Solve This?

119Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Many Preconditions & Postconditions
Based on Notes from Doug Hoffman

System under test

System state Program state, including
uninspected outputs

 Impacts on connected
devices/system resources

To other cooperating
processes, clients or servers

Monitored outputs

System stateProgram state,
including relevant data

 Configuration and system
resources

From other cooperating
processes, clients or servers

Intended inputs

120Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

The fact that a bug is not reproducible is information.

● The program is telling you that you have a hole in your logic.

● You are not considering the relevance of (and not checking

values of)

○ some of the input conditions (including environmental

preconditions), or

○ some of the output conditions

● Therefore, you miss the critical condition(s) needed to

reproduce this failure.

● Therefore, you need to consider other conditions.

Non-Reproducible Failures

121Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Use Tools to Capture More Information

● Capture everything on your screen, in a series of slides that

show the sequence of the test:

○ Wink (www.debugmode.com/wink)

○ Camtasia (https://www.techsmith.com/video-editor.html)

○ UserVue (www.techsmith.com)

○ Jing (https://www.techsmith.com/jing-tool.html)

○ FlashBack (https://www.flashbackrecorder.com)

● Lots of sites that link to tools. Here’s an example,

https://www.techradar.com/news/the-best-free-screen-recorder

● Test with the programmer’s debugger loaded.

● Capture state information over time with tools like FileMon,

RegMon, Process Monitor, etc.

(technet.microsoft.com/en-us/sysinternals/bb795535.aspx)

● In web-based testing, use a proxy.

Record all traffic.

○ Fiddler (https://www.telerik.com/fiddler)

○ Charles (https://www.charlesproxy.com)

Especially if the program (or platform) under test often fails in hard to reproduce ways, use tools. e.g.:

http://www.debugmode.com/wink
https://www.techsmith.com/video-editor.html
http://www.techsmith.com
https://www.techsmith.com/jing-tool.html
https://www.flashbackrecorder.com
https://www.techradar.com/news/the-best-free-screen-recorder
http://technet.microsoft.com/en-us/sysinternals/bb795535.aspx
https://www.telerik.com/fiddler
https://www.charlesproxy.com

122Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Watts Humphrey recommends programmers keep a private record of their errors,

reviewing them to look for patterns. Programmers have characteristic errors, errors

they tend to make over and over. On recognizing one, the programmer can avoid

repeating it. Ultimately, the PSP practitioner’s bug rate drops a lot.

A non-reproducible bug is a tester’s error. Do testers have characteristic blind spots for

failure-related conditions? Sometimes, programmers find the cause of non-repro bugs;

when they do, they can help you identify the critical condition that you missed. Watts

Humphrey suggested to me the idea of testers’ tracking this information to discover

their blind spots.

To improve over time, keep track of the bugs you’re missing and what conditions you

are not attending to (or find too hard to manipulate).

Non-Reproducible Failures

123Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

The following pages list some conditions commonly ignored or

missed by testers.

This is based on personal experience and brainstorming sessions

several years ago. It’s a bit dated.

Your personal list will be different, but maybe this is a good start.

Over time, you can customize this list based on your experiences.

When you run into a irreproducible bug look at this list and ask

whether any of these conditions could be the critical one. If it could,

vary your tests on that basis and you might reproduce the failure.

Non-Reproducible Errors

124Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

There are plenty of other conditions that are relevant in your

environment.

Start with the ones in this list but add others as you learn of them.

How do you learn? Sometimes, someone will fix a bug that you

reported as non-reproducible. Call the programmer, ask him how to

reproduce it, what are the critical steps that you have to take?

You need to know this anyway, so that you can confirm that a bug

fix actually worked.

Examples of Conditions Often Missed

125Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Some problems have delayed effects:

● a memory leak might not show up until after you cut and paste

20 times.

● stack corruption might not turn into a stack overflow until you

do the same task many times.

● a wild pointer might not have an easily observable effect until

hours after it was mis-set.

If you suspect that you have time-delayed failures, use tools such as

videotape, capture programs, debuggers, debug-loggers, or memory

meters to record a long series of events over time.

Examples of Conditions Often Missed

With a time-delayed

bug, you won’t be able

to recreate the failure

until you think

backwards in time

and repeat the tests

you did before the

tests that apparently

caused the problem.

126Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● The bug depends on the value of a hidden input variable. (Bob Stahl teaches this

well.) In any test, there are the variables we think are relevant and there is

everything else. If the data you think are relevant don’t help you reproduce the

bug, ask what other variables were set, and what their values were.

● Some conditions are hidden; others are invisible. You cannot manipulate them

and so it is harder to recognize that they’re present. You might have to talk with

the programmer about what state variables or flags get set in the course of

using a particular feature.

● Some conditions are catalysts. They make failures more likely to be seen.

Example: low memory for a leak; slow machine for a race. Some catalysts are

more subtle, such as use of one feature that has a subtle interaction with

another.

Examples of Conditions Often Missed

127Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● Some bugs are predicated on corrupted data. They don’t appear unless there

are impossible configuration settings in the config files or impossible values in

the database. What could you have done earlier today to corrupt this data?

● Programs have various degrees of data coupling. When two modules use the

same variable, oddness can happen in the second module after the variable is

changed by the first. (Books on structured design, such as Yourdon/Constantine

often analyze different types of coupling in programs and discuss strengths and

vulnerabilities that these can create.) In some programs, interrupts share data

with main routines in ways that cause bugs that will only show up after a

specific interrupt.

● The bug depends on you doing related tasks in a specific order.

Examples of Conditions Often Missed

128Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● The bug might appear only at a specific time of day or day of the month or year.

Look for week-end, month-end, quarter-end and year-end bugs, for example.

● Special cases appear in the code because of time or space optimizations or

because the underlying algorithm for a function depends on the specific values

fed to the function (talk to your programmer).

● The bug is caused by an error in error-handling. You have to generate a

previous error message or bug to set up the program for this one.

● The program may depend on one version of a DLL. A different program loads a

different version of the same DLL into memory. Depending on which program is

run first, the bug appears or doesn’t.

Examples of Conditions Often Missed

129Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● The bug is caused by a race condition or other time-dependent event, such as:

○ An interrupt was received at an unexpected time.

○ The program received a message from another device or system at an

inappropriate time (e.g. after a time-out.)

○ Data was received or changed at an unexpected time.

● Time-outs trigger a special class of multiprocessing error handling failures.

These used to be mainly of interest to real-time applications, but they come up

in client/server work and are very pesky:

○ Process A sends a message to Process B and expects a response. B fails

to respond. What should A do? What if B responds later?

Examples of Conditions Often Missed

130Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● Another inter-process error-handling failure - Process A sends a message to B

and expects a response. B sends a response to a different message, or a new

message of its own. What does A do?

● The program might be showing an initial state bug, such as:

○ The bug occurs only the first time you run the program (so it happens

once on every machine). To recreate the bug, you might have to reinstall

the program. If the program doesn’t uninstall cleanly, you might have to

install on a fresh machine (or restore a copy of your system taken before

you installed this software) before you can see the problem.

○ The bug appears once after you load the program but won’t appear again

until you exit and reload the program.

Examples of Conditions Often Missed

131Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● You’re being careful in your attempt to reproduce the bug, and you’re typing too

slowly to recreate it.

● The problem depends on a file that you think you’ve thrown away, but it’s

actually still in the Trash (where the system can still find it).

● A program was incompletely deleted, or one of the current program’s files was

accidentally deleted when that other program was deleted. (Now that you’ve

reloaded the program, the problem is gone.)

● The program was installed by being copied from a network drive, and the drive

settings were inappropriate or some files were missing. (This is an invalid

installation, but it happens on many customer sites.)

Examples of Conditions Often Missed

132Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● The bug depends on co-resident software, such as a virus checker or some

other process, running in the background. Some programs run in the

background to intercept foreground programs’ failures. These may sometimes

trigger failures (make errors appear more quickly).

● You forgot some of the details of the test you ran, including the critical one(s) or

you ran an automated test that lets you see that a crash occurred but doesn’t

tell you what happened.

● The bug depends on a crash or exit of an associated process.

● The program might appear only under a peak load, and be hard to reproduce

because you can’t bring the heavily loaded machine under debug control

(perhaps it’s a customer’s system).

Examples of Conditions Often Missed

133Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● The bug occurred because a device that it was attempting to write to or read

from was busy or unavailable.

● It might be caused by keyboard keybounce or by other hardware noise.

● On a multi-tasking or multi-user system, look for spikes in background activity.

● The bug is specific to your machine’s hardware and system software

configuration. (This common problem is hard to track down later, after you’ve

changed something on your machine. That’s why good reporting practice

involves replicating the bug on a second configuration.)

Examples of Conditions Often Missed

134Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● Code written for a cooperative multitasking system can be thoroughly confused,

sometimes, when running on a preemptive multitasking system.

○ (In the cooperative case, the foreground task surrenders control when it

is ready. In the preemptive case, the operating system allocates time

slices to processes. Control switches automatically when the foreground

task has used up its time. The application is suspended until its next time

slice. This switch occurs at an arbitrary point in the application’s code,

and that can cause failures.)

Examples of Conditions Often Missed

135Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● The apparent bug is a side-effect of a hardware failure.

○ For example, a flaky power supply creates irreproducible failures.

○ Another example: one prototype system had a high rate of irreproducible

firmware failures. Eventually, these were traced to a problem in the

building’s air conditioning. The test lab wasn’t being cooled, no fan was

blowing on the unit under test, and prototype boards in the machine ran

very hot. The machine was failing at high temperatures.

● Finally, the old standby:

○ Elves tinkered with your machine when you weren’t looking. (For example,

at one company, my manager would demonstrate the software to people,

using my machine, while I was at lunch. If you have to deal with elves, set

up a capture program on your system so you’ll be able to find out what

they did when you come back.)

Examples of Conditions Often Missed

136Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

Problem:

● Non-reproducible bugs burn lots of programmer

troubleshooting time.

● Serious problems that are hard to reproduce can be

discovered, reported, and closed multiple times without

anyone recognizing the pattern. Therefore, it’s useful to keep

non-repro bugs open and review them for patterns.

● Until they’re closed, they show up in open-bug statistics.

● In companies that manage by bug numbers, there is high

pressure to close irreproducible bugs quickly.

Close Non-Reproducible Bugs?

137Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

The Dumpster:

● A resolution code that puts the bug into an ignored storage

place.

○ The bug shows up as resolved (or is just never counted)

in the bug statistics, but it is not closed. It is in a holding

pattern.

● Assign a non-reproducible bug to the dumpster if you

(programmers and testers)

○ have spent lots of time on it but

○ you don’t think that more work on the bug will be fruitful

until more failures provide more information.

Throwing Bugs Into the Dumpster

138Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

● Every week or two, (testers and/or programmers) scan the dumpster bugs for

similar failures. Sometimes, you’ll find several similar reports. If you (or the

programmer) think there are enough variations in the reports to provide useful

hints on how to reproduce the bug, spend time on the collection. If you (or the

programmer) can reproduce the bugs, reopen them and fix or defer them.

● Near the end of the project, do a final review of bugs in the dumpster. These will

either close as non-reproducible or be put through one last scrutiny.

● (This is an unusual practical suggestion, but it has worked for clients of mine.)

Next We Do Dumpster-Diving

139Copyright © 2021 AltomLecture 4 - Anticipating and Dealing with Objections: Irreproducible Bugs

1. Many reasons for not fixing bugs

2. Non-repro is one of the most common, and most easily defended

3. Few failures are inherently non-reproducible

4. Usually, the critical condition for reproducing the bug is an unusual one, not

imagined by the tester

5. Tools help capture information to support troubleshooting

6. Tracking critical conditions for non-repro bugs can improve awareness

7. Multiple reports provide patterns that can help troubleshooting. Keeping

multiple reports of non-repro bugs open can help this troubleshooting effort.

Summing Up

140Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Copyright © 2021 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Bug Advocacy
Lecture 5 - Bugs that Could Be Dismissed as
Unreasonable, Unrealistic, or Unimportant

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

141Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Course Overview: Fundamental Topics

 1. Basic Concepts

 2. Effective Advocacy: Making People Want to Fix the Bug

 3. Writing Clear Bug Reports

 4. Anticipating and Dealing With Objections: Irreproducible Bugs

 5. Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

 6. Credibility and Influence

142Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Overcoming Objections

Programmers resist spending time on a bug if:

● The programmer can’t replicate the failure.

● The programmer doesn’t understand

the report.

● It will take too much work to figure

out what the reporter is complaining

about and what steps he actually took.

● It seems unrealistic (e.g. “corner case”

or requires a complex sequence of improbable

steps)

● It is perceived as unimportant:

No perceived customer impact, minor failure,

unused feature.

● It’s (allegedly) not a bug, it’s a feature.

● It will take a lot of work to fix the bug or will

introduce too much risk into the code.

● Management doesn’t care about bugs like this.

● The programmer doesn’t like/trust you (or the

customer who is complaining about the bug).

143Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Overcoming Objections

Programmers resist spending time on a bug if:

● The programmer can’t replicate the failure.

● The programmer doesn’t understand the

report.

● It will take too much work to figure out what

the reporter is complaining about and what

steps he actually took.

● It seems unrealistic (e.g. “corner case”

or requires a complex sequence of

improbable steps)

● It is perceived as unimportant:

No perceived customer impact, minor

failure, unused feature.

● It’s (allegedly) not a bug, it’s a feature.

● It will take a lot of work to fix the bug or will

introduce too much risk into the code.

● Management doesn’t care about bugs like this.

● The programmer doesn’t like/trust you (or the

customer who is complaining about the bug).

144Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

We saw this in Lesson 2 (corner cases).

1. use extreme tests to expose bugs

2. then modify the tests to expose bugs under less extreme conditions (or

demonstrate that the bugs really are restricted to the extremes)

If the problem DOES only occur in extreme cases:

● How many people might actually run into this extreme? (Get data)

● How serious is the failure?

If you can’t do the follow-ups:

● Ask for causal analysis before dismissal

The Unrealistic Failure

145Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

● The bug has been in the product for several versions, no one

(allegedly) cares about it.

○ Work with the technical support or help desk manager to

check whether no one cares.

○ Outbound support studies are particularly interesting.

No Customer Impact: Old Bug

146Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

If your report of some other type of bug or design issue is dismissed

as having “no customer impact,” ask yourself:

Hey, how do they know the customer impact?

Then check with people who might actually have data or experience:

No Customer Impact: Generally

The stakeholders

who are most

affected by a bug

should explain the

bug’s costs.

● Technical marketing

● Human factors

● Network admins

● In-house power users

● Technical support

● Documentation

● Training

● Maybe sales

147Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Overcoming Objections

Programmers resist spending time on a bug if:

● The programmer can’t replicate the failure.

● The programmer doesn’t understand the

report.

● It will take too much work to figure out what

the reporter is complaining about and what

steps he actually took.

● It seems unrealistic (e.g. “corner case” or

requires a complex sequence of improbable

steps)

● It is perceived as unimportant: No perceived

customer impact, minor failure, unused

feature.

● It’s (allegedly) not a bug, it’s a feature.

● It will take a lot of work to fix the bug or will

introduce too much risk into the code.

● Management doesn’t care about bugs like this.

● The programmer doesn’t like/trust you (or the

customer who is complaining about the bug).

148Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

● “An argument over whether something is a bug”

is really

“an argument about the oracle you should use”

to evaluate your test results.

It’s (Allegedly) Not a Bug. It’s a Feature

149Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

● “...it works”

really means

● “...it appeared to meet some requirement to some degree.”

Use Oracles to Resolve Arguments

An oracle is the principle or mechanism by which you

recognize a problem.

150Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

● “...it doesn’t work”

often means

● “...it violates my expectations.”

Use Oracles to Resolve Arguments

An oracle is the principle or mechanism by which you

recognize a problem.

151Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Suppose the program says “It’s not a bug because the program

meets the specification.”

"Meets the specification" is a consistency oracle:

● The program might work as specified but offer low value to the

stakeholder

● The program DOESN’T work as specified because it

○ works better than the specification

○ handles a situation not anticipated in the specification

○ takes into account stakeholder needs that were missed in

the specification.

The Specification Oracle

A program that

exactly meets a

specification

is correct if and

only if the

specification is

complete and

correct

152Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Remember Those Consistency Oracles

These are

especially useful

for explaining a

bug and its

significance.

Consistent within product Function behavior consistent with behavior of comparable
functions or functional patterns within the product

Consistent with comparable
products

Function behavior consistent with that of similar functions in
comparable products

Consistent with history Present behavior consistent with past behavior

Consistent with our image Behavior consistent with an image the organization wants to
project

Consistent with claims Behavior consistent with documentation, specifications, or ads

Consistent with standards
or regulations

Behavior consistent with externally-imposed requirements

Consistent with user’s
expectations

Behavior consistent with what we think users want

Consistent with purpose Behavior consistent with product or function’s apparent
purpose

153Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

To argue that the program is misbehaving.

● cite one or more of the consistency heuristics

● show that the heuristic(s) would predict that the program

would behave differently

● explain how the program would behave if it conformed to

these heuristics

● if possible, tie the difference to potential impact on a

stakeholder

It’s Not a Bug, It’s a Feature (?)

154Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Overcoming Objections

Programmers resist spending time on a bug if:

● The programmer can’t replicate the failure.

● The programmer doesn’t understand the

report.

● It will take too much work to figure out what

the reporter is complaining about and what

steps he actually took.

● It seems unrealistic (e.g. “corner case” or

requires a complex sequence of improbable

steps)

● It is perceived as unimportant: No perceived

customer impact, minor failure, unused feature.

● It’s (allegedly) not a bug, it’s a feature.

● It will take a lot of work to fix the bug or will

introduce too much risk into the code.

● Management doesn’t care about bugs

like this.

● The programmer doesn’t like/trust you (or the

customer who is complaining about the bug).

155Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

● Report a design issue, it gets rejected. Report essentially the same issue—at

what point are you just wasting time?

● Contract-based development, customer rejected some obvious improvements

to the product. Should you report them, given that the customer will not pay for

them?

● Late in the project, high fear of side-effects. Straightforwardly minor coding

errors (spelling mistakes in help text) won’t be fixed. Should you report them?

● Alternatives:

○ MIP (mention in passing)

○ Alternate database

You Shouldn’t Report These Bugs?

Denial of

service attack

on a project:

report lots of

deferrable bugs

late in

development.

156Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Overcoming Objections

Programmers resist spending time on a bug if:

● The programmer can’t replicate the failure.

● The programmer doesn’t understand the

report.

● It will take too much work to figure out what

the reporter is complaining about and what

steps he actually took.

● It seems unrealistic (e.g. “corner case” or

requires a complex sequence of improbable

steps)

● It is perceived as unimportant: No perceived

customer impact, minor failure, unused feature.

● It’s (allegedly) not a bug, it’s a feature.

● It will take a lot of work to fix the bug or will

introduce too much risk into the code.

● Management doesn’t care about bugs like this.

● The programmer doesn’t like/trust you

(or the customer who is complaining about

the bug).

157Copyright © 2021 AltomLecture 5 - Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

Programmers and project managers reject bugs for a lot of reasons.

Some of these sound unreasonable on their face, however:

1. Sometimes, they are not unreasonable

2. You can have a big impact on whether one of these types of

rejections happens, or is accepted by the triage team,

○ by the wording of your reports, and

○ the research you provide beyond the specific

reproduce-the-bug details.

Summing Up

158Copyright © 2021 AltomLecture 6 - Credibility and Influence

Copyright © 2021 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Rebecca L. Fiedler, M.B.A., PH.D.

Retired, President of Kaner, Fiedler & Associates

Black Box Software Bug Advocacy
Lecture 6
Credibility and Influence

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

159Copyright © 2021 AltomLecture 6 - Credibility and Influence

Course Overview: Fundamental Topics

 1. Basic Concepts

 2. Effective Advocacy: Making People Want to Fix the Bug

 3. Writing Clear Bug Reports

 4. Anticipating and Dealing With Objections: Irreproducible Bugs

 5. Bugs that Could Be Dismissed as Unreasonable, Unrealistic, or Unimportant

 6. Credibility and Influence

160Copyright © 2021 AltomLecture 6 - Credibility and Influence

Some people are more successful at getting the bugs they report

fixed than others. Why?

● One factor is the technical quality of the report (follow-up

testing, impact analysis, clarity of writing, etc.)

● A different factor is the extent to which the reporter is credible

or influential with the people who are evaluating the report.

How do you build (or lose) that influence?

Credibility and Influence

161Copyright © 2021 AltomLecture 6 - Credibility and Influence

What happens to your reputation if you:

● Report every bug, no matter how minor, to make sure no bug is ever missed?

● Report only the serious problems (the “good bugs”)?

● Fully analyze each bug?

● Only lightly analyze bugs?

● Insist that every bug get fixed?

Your decisions reflect on your judgment and will cumulatively affect your credibility.

The comprehensibility of your reports and the extent and skill of your analysis will also

have a substantial impact on your credibility.

See Kaner, C., Falk, J., & Nguyen, H.Q., (2nd Edition, 2000), Testing Computer Software, pages 90-97, 115-118

Your Choices and Your Credibility

162Copyright © 2021 AltomLecture 6 - Credibility and Influence

Bug handling involves a series of many decisions by different

people, such as:

Tester:

● Should I report this bug?

● Should I report these similar bugs as one bug or many?

● Should I report this awkwardness in the user interface?

● Should I stop reporting bugs that look minor?

● How much time should I spend on analysis and styling of this

report?

Managing a Series of Decisions

163Copyright © 2021 AltomLecture 6 - Credibility and Influence

Programmer:

● Should I fix this bug or defer it?

Project Manager:

● Should I defer this bug?

● If the programmer wants to defer this bug, should I approve

that?

● Do I know what the underlying problem is? Does the

programmer? Do we know if there are other risks? Do I know

how long this will take to fix? Do I know what decision to make?

Do I trust the programmer’s intuition or judgment?

Managing a Series of Decisions

164Copyright © 2021 AltomLecture 6 - Credibility and Influence

Tester:

● Should I appeal the deferral of this bug?

● How much time should I spend analyzing this bug further?

Managing a Series of Decisions

One critical lesson:

If you’re going to

fight, win.

165Copyright © 2021 AltomLecture 6 - Credibility and Influence

Test Group Manager (or Test Lead):

● Should I make an issue about this bug?

○ If the project team won’t fix it, should I raise it with more senior

management?

○ Is my staff being treated with appropriate respect in this process?

○ Was this deferred because my staff is writing weak bug reports?

● Should I encourage my tester to

○ investigate the bug further?

○ argue the bug further?

○ or to quit worrying about this one?

○ or should I just keep out of the discussion this time?

Managing a Series of Decisions

166Copyright © 2021 AltomLecture 6 - Credibility and Influence

Customer Service, Marketing, Documentation:

● Should I ask the project manager to reopen this bug?

● (The tester appealed the deferral) Should I support the tester

this time?

● Should I spend time trying to figure this thing out?

● Will this require extra work on the manual/support notes/

advertising/help?

Director, Vice President, other senior staff:

● Should I override the project manager’s deferral of this bug?

Managing a Series of Decisions

167Copyright © 2021 AltomLecture 6 - Credibility and Influence

Modeling Decision-Making

Bug reporting/fixing involves a series of decisions:

● made under time pressure

● with incomplete information

● and incomplete knowledge of consequences.

Some decisions will be wrong.

Decision-making under uncertainty is influenced by:

● the available information

● the decision-maker’s heuristics

● the decision-maker’s biases

168Copyright © 2021 AltomLecture 6 - Credibility and Influence

● Much of this is unconscious.

● The bias testers are most familiar with in testing is preferred result:

○ Glen Myers (Art of Software Testing): testers who want to find bugs are

more likely to notice program misbehavior than people who want to

verify that the program works correctly.

○ Under the name Experimenter Effects, this phenomenon has been widely

studied and confirmed across the fields of science.

○ If you WANT an experiment to come out one way instead of another, you

are more likely to get that result. That is, you are likely to bias how you

design the experiment, how you run the experiment, how you deal with

your mistakes, how you analyze the data, how you read the graphs—to

yield what you are looking for.

Decisions Are Subject to Bias

For MUCH more on

this, search the phrase

“experimenter effects”

or for writings by

Robert Rosenthal

169Copyright © 2021 AltomLecture 6 - Credibility and Influence

Prime biasing variables are:

● Motivation (preferred result)

● Perceived probability:

○ If you think that an event is unlikely, you will be substantially less likely

(below the actual probability) to report it.

● Expected consequence of a decision:

○ What happens if you make a False Alarm? Is this worse than a Miss or

less serious?

● Perceived importance of the task:

○ A person who perceives a decision as very important may be much more

likely to rely on careful observation and less likely to respond randomly

or primarily on their biases…

Decisions Are Subject to Bias

Since the 1950’s,

application of signal

detection theory to

human perception has

had a profound

influence on the nature

and quality of models

of subjective

experience.

170Copyright © 2021 AltomLecture 6 - Credibility and Influence

Signal Detection & Recognition

● Hit: The signal (the event you are looking for) is present

and you detect (recognize) it. In the testing case, you

are looking for a bug, a software failure.

● Miss: The signal (the program fails) is present, but you

don’t recognize it

● False Alarm: The signal is not present (the program

works OK), but you report the signal (write a bug

report)

● Correct Rejection: The signal is not present and you

don’t report it as present

 Response

Bug Feature

Hit Miss

False alarm
Correct

RejectionA
ct

ua
l E

ve
nt B

ug
Fe

at
ur

e

171Copyright © 2021 AltomLecture 6 - Credibility and Influence

Making Decisions Under Uncertainty

We make decisions with incomplete information and therefore

we make mistakes.

● How can we reduce the number of false alarms without

increasing the number of misses?

● How can we increase the number of hits without

increasing the number of false alarms?

● Pushing people to make fewer of one type of reporting

error will inevitably result in an increase in another type

of reporting error.

● Training, specs, etc. help, but the basic problem remains.

172Copyright © 2021 AltomLecture 6 - Credibility and Influence

Test groups establish policies and procedures for handling bugs, as

do the groups who receive and evaluate the bug reports.

Those policies affect how the bugs are treated, both directly (that’s

what policies DO) and indirectly (by creating biases)

Bug reporting policymakers must consider the effects on the overall

decision-making system, not just on the tester and first-level bug

reader.

Decisions Have Consequences

173Copyright © 2021 AltomLecture 6 - Credibility and Influence

● Give people the time needed to do good work and show that

you expect good work

● Give feedback to reporters that explains why their reports

were rejected:

○ weak communication quality

○ weak analysis

○ weak underlying problem

○ exaggerated or incredible assessment of consequences.

● Explain the costs of spurious reports:

○ processing time

○ opportunity cost

To Improve the Quality of Reports

If you want

better reports,

use collegial

feedback to train

the reporter.

174Copyright © 2021 AltomLecture 6 - Credibility and Influence

To increase probability that people report bugs:

● Encourage testers to report all anomalies.

● Praise well-written reports.

● Create contests to recognize best bug reports.

● Publish feedback about the impact of bug fixes (estimated savings in support

costs).

● Give feedback to non-testers who report bugs about the results of their reports.

● Adopt a formal system for challenging bug deferrals.

● Give positive feedback (“keep up the good work”) when a genuine bug is

reported, but deferred.

Biasing People Who Report Bugs

175Copyright © 2021 AltomLecture 6 - Credibility and Influence

To increase probability that people report bugs:

● Manage the friction that comes from bugs hitting the system at hard-to-handle

times. Weigh schedule urgency consequences against an appraisal of quality

costs.

○ Early in the schedule, report all types of bugs

○ late in the schedule,

■ be more selective about challenging the design, identifying

desirable additional benefits, or reporting low-visibility minor

problems.

■ allow for informal reporting processes so that serious bugs can

get noticed quickly (MIP-mention in passing).

■ set up a separate database for design/minor issues (which will be

evaluated for the start of the next release).

Biasing People Who Report Bugs

176Copyright © 2021 AltomLecture 6 - Credibility and Influence

To reduce valid bugs:

● convince them their work is pointless or will be ignored,

● make them feel unappreciated,

● make them feel as though they aren’t team players or they

have a bad attitude

● treat every report as a personal attack,

● emphasize the urgent need for this product in the field

● create incentives for not reporting bugs, or

● create incentives for other people to pressure them not to

report bugs.

Biasing People Who Report Bugs

177Copyright © 2021 AltomLecture 6 - Credibility and Influence

● Don’t use bug statistics for employee bonus or discipline.

● Don’t use bug stats to embarrass people.

● Be very cautious about filtering reports of “bugs” you consider minor (or

features). Refusing to allow someone else’s reports into the bug database

discourages them.

● Rarely change an in-house bug reporter’s language without their free

permission. Show respect for their words. Add your comments as

additional notes.

● Monitor language in the reports that is critical of the programmer or the

tester.

● Don’t uncritically accept someone’s dismissal of a tester’s report as very

unlikely in the field.

Bias-Risky Conduct

178Copyright © 2021 AltomLecture 6 - Credibility and Influence

● Don’t use bug statistics for employee bonus or discipline.

● Don’t use bug stats to embarrass people.

● Be very cautious about filtering reports of “bugs” you consider minor

(or features). Refusing to allow someone else’s reports into the bug

database discourages them.

● Rarely change an in-house bug reporter’s language without their free

permission. Show respect for their words. Add your comments as

additional notes.

● Monitor language in the reports that is critical of the programmer or the

tester.

● Don’t uncritically accept someone’s dismissal of a tester’s report as very

unlikely in the field.

Bias-Risky Conduct

179Copyright © 2021 AltomLecture 6 - Credibility and Influence

● Don’t use bug statistics for employee bonus or discipline.

● Don’t use bug stats to embarrass people.

● Be very cautious about filtering reports of “bugs” you consider minor (or

features). Refusing to allow someone else’s reports into the bug database

discourages them.

● Rarely change an in-house bug reporter’s language without their free

permission. Show respect for their words. Add your comments as

additional notes.

● Monitor language in the reports that is critical of the programmer or

the tester.

● Don’t uncritically accept someone’s dismissal of a tester’s report as

very unlikely in the field.

Bias-Risky Conduct

180Copyright © 2021 AltomLecture 6 - Credibility and Influence

These reduce the probability that the bug will be taken seriously and fixed.

● Language critical of the programmer

● Inflated estimate of the bug’s severity

● Pestering & refusing to ever take “No” for an answer

● Incomprehensibility, excessive detail, or apparent narrowness of the report

● Tight schedule (no time to fix anything)

● Weak reputation of the reporter

● Management encouragement to ignore/defer bugs

● Contempt for the end user or customer

Biasing People Who Evaluate Bug Reports

181Copyright © 2021 AltomLecture 6 - Credibility and Influence

These increase the probability that a bug will be taken seriously and fixed.

● It conflicts with reliability or regulatory requirements in this market, or violates

the contract

● Persuasive real-world impact

● Reported by customer/beta (who says it’s important) rather than internally

● Strong reputation of the reporter

● Weak reputation of the programmer who created or deferred the bug

● Poor quality/performance compared to competitive product(s)

● News of litigation in the press

Biasing People Who Evaluate Bug Reports

182Copyright © 2021 AltomLecture 6 - Credibility and Influence

An important test management task is to facilitate understanding

and agreement about the policies and procedures for bug

reporting/tracking.

● Track open issues/tasks or just bugs?

● Track documentation issues or just code?

● Track minor issues late in the schedule or not?

● Track issues outside of the published spec and requirements

or not?

● How to deal with similarity?

Clarify Expectations

Making the rules

explicit helps

prevent

misunderstandings

about what’s

personal and

what’s not.

183Copyright © 2021 AltomLecture 6 - Credibility and Influence

1. Some people are more successful at getting bugs fixed. Keeping in mind the

subjective factors in assessing bug reports, they:

○ Write good reports (clear writing, good troubleshooting)

○ Report significant problems

○ Never exaggerate the severity of their bug

○ Provide good reasons/data for arguing that a bug should be fixed, or

admit that they are speaking from intuition

○ Treat the programmers and other stakeholders with courtesy and

respect (even—especially—ones who don’t deserve it.)

2. If they respect you and like you, they’ll treat your bug reports with more respect.

Summing Up

184Copyright © 2021 AltomLecture 6 - Credibility and Influence

1. Quality is subjective

2. Bugs are threats to the value of the product to a stakeholder. I normally report

anything that any stakeholder with influence might want fixed. However, if my

testing mission is tightly focused, I operate within the mission. For example, if I

am doing pre-alpha testing with the programmers, helping them do a very early

review of their code, I might work with them only on certain types of coding

errors because that might be the only service that will help them write better

code at that time.

3. A bug report will have a lot more effect if it ties the problem being reported to

the loss of value to the stakeholder with influence.

4. In general, bug reporting is a persuasive activity. We are exercising influence,

not just writing down value-neutral technical details.

Summing Up the Course

185Copyright © 2021 AltomLecture 6 - Credibility and Influence

1.

2.

3.

4.

5. We can simplify the persuasive task by saying that we are trying to

○ motivate people to fix our bugs and

○ overcome their objections to fixing those bugs.

We have many methods for improving reports in both ways.

6. A failure is a misbehavior caused by an underlying error. An error can cause

many different failures. We should look for the worst failure and focus reporting

on that.

7. The entire bug-handling process involves a series of decisions that are heavily

influenced by the decision-makers’ preconceived notions—their heuristics and

biases—about whose reports are worthwhile and what problems are likely to be

important. The credibility of the tester has a big impact on these decisions.

Summing Up the Course

	Lecture 1
	Notice
	Many Thanks...
	Course Overview: Fundamental Topics
	The Bug Advocacy Lectures
	Five Key Challenges
	Summary of a Bug Workflow
	Bug Reports Are a Tester’s Primary Work Product
	Bug Advocacy?
	Common Answers (Software Error)
	Consider an Example
	What’s the “Standard” Answer?
	The Usage in THIS Course
	The Definitions in This Course
	What Is Quality? Leading Definitions
	What Is Quality?
	Quality Is Multidimensional
	Quality—According to WHO?
	Different People, Different Quality
	So, What IS Quality?
	The Definitions in This Course
	Summing Up

	Lecture 2
	Course Overview: Fundamental Topics
	It’s Not Only About Reporting the Bug
	But There Are Tradeoffs
	Bug Advocacy = Selling Bugs
	Bug Advocacy
	How To Sell Bugs
	Motivating the Bug Fixer
	Researching the Failure Conditions
	Refresher on Terminology
	More Serious Than It First Appears
	Follow-Up Testing for Severity
	Follow-Up 1: Vary Your Behavior
	Follow-Up 2: Vary Options & Settings
	Follow-Up 3: Vary Data Files
	Follow-Up 4: Vary the Configuration
	Researching the Failure Conditions
	Showing a Bug Is More General
	Corner Cases
	If You DO Have to Defend a Corner Case
	Researching the Failure Conditions
	Look for Configuration Dependence
	Configuration Dependence
	Testing for Configuration Dependence
	Bug Reporting, With 2 Machines
	Researching the Failure Conditions
	Follow-Up: Bug New to This Version?
	Adding Information Beyond Test Results
	Summing Up

	Lecture 3
	Course Overview: Fundamental Topics
	The Bug Tracking System
	Mission of Bug Tracking Systems
	Getting the Right Bugs Fixed
	To Report a Bug Well: Replicate
	To Report a Bug Well: Isolate
	Isolate the Failure: Eliminate Unnecessary Steps (1)
	Isolate the Failure: Eliminate Unnecessary Steps (2)
	Isolate the Failure: Eliminate Unnecessary Steps (3)
	Isolate the Failure: Eliminate Unnecessary Steps (4)
	Isolate the Failure: Two Failures ➔ Two Reports

	To Report a Bug Well: Maximize
	To Report a Bug Well: Generalize
	To Report a Bug Well: Externalize
	To Report a Bug Well: Neutral Tone
	Typical Fields in a Problem Report
	Typical Fields: Problem Summary
	Typical Fields: Report Type
	Typical Fields: Severity vs Priority
	Typical Fields: Problem Description
	Typical Fields: Suggested Fix
	Typical Fields: Status and Resolution
	Typical Fields: Resolution
	Typical Fields: Comments

	Fields I Avoid: Unreliable Data
	Fields I Avoid: Project Phase
	Fields I Avoid: Root Cause, Failure Module, Cost
	Fields I Avoid: Cost Mitigated
	Fields I Avoid: Employee Performance
	Summing Up

	Lecture 4
	Course Overview: Fundamental Topics
	Overcoming Objections
	Non-Reproducible Failures
	Can You Reproduce the Problem?
	Non-Reproducible Failures
	Wouldn’t Test Scripts Solve This?
	Many Preconditions & Postconditions
	Non-Reproducible Failures
	Use Tools to Capture More Information
	Non-Reproducible Failures
	Non-Reproducible Errors
	Examples of Conditions Often Missed
	Close Non-Reproducible Bugs?
	Throwing Bugs Into the Dumpster
	Next We Do Dumpster-Diving
	Summing Up

	Lecture 5
	Course Overview: Fundamental Topics
	Overcoming Objections
	The Unrealistic Failure
	No Customer Impact: Old Bug
	No Customer Impact: Generally
	Overcoming Objections
	It’s (Allegedly) Not a Bug. It’s a Feature
	Use Oracles to Resolve Arguments
	The Specification Oracle
	Remember Those Consistency Oracles
	It’s Not a Bug, It’s a Feature (?)
	Overcoming Objections
	You Shouldn’t Report These Bugs?
	Overcoming Objections
	Summing Up

	Lecture 6
	Course Overview: Fundamental Topics
	Credibility and Influence
	Your Choices and Your Credibility
	Managing a Series of Decisions
	Modeling Decision-Making
	Decisions Are Subject to Bias
	Signal Detection & Recognition
	Making Decisions Under Uncertainty
	Decisions Have Consequences
	To Improve the Quality of Reports
	Biasing People Who Report Bugs
	Bias-Risky Conduct
	Biasing People Who Evaluate Bug Reports
	Clarify Expectations
	Summing Up
	Summing Up the Course

