
1Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Copyright © 2022 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Black Box Software Testing Foundations
Lecture 1
Overview and Basic Definitions

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

2Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

The practices recommended and discussed in this course are useful for an introduction

to testing, but more experienced testers will adopt additional practices. I am writing

this course with the mass-market software development industry in mind.

Mission-critical and life-critical software development efforts involve specific and

rigorous procedures that are not described in this course.

Some of the BBST-series courses include some legal information, but you are not my

legal client. I do not provide legal advice in the notes or in the course. If you ask a BBST

instructor a question about a specific situation, the instructor might use your question

as a teaching tool, and answer it in a way that s/he believes would “normally” be true

but such an answer may be inappropriate for your particular situation or incorrect in

your jurisdiction. Neither I nor any instructor in the BBST series can accept any

responsibility for actions that you might take in response to comments about the law

made in this course. If you need legal advice, please consult your own attorney.

Notice

I

3Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

https://kaner.com

My job titles are Professor of Software Engineering at the Florida Institute of Technology,
and Research Fellow at Satisfice, Inc. I’m also an attorney, whose work focuses on same
theme as the rest of my career: satisfaction and safety of software customers and
workers. I`ve worked as a programmer, tester, writer, teacher, user interface designer,
software salesperson, organization development consultant, as a manager of software
testing, user documentation, and software development, and as an attorney focusing on
the law of software quality. These have provided many insights into relationships
between computers, software, developers, and customers. I studied Experimental
Psychology for my Ph.D., with a dissertation on Psychophysics (essentially perceptual
measurement). This field nurtured my interest in human factors (usability of computer
systems) and the development of useful, valid software metrics. I recently received ACM’s
Special Interest Group on Computers and Society “Making a Difference” award, which is
“presented to an individual who is widely recognized for work related to the interaction
of computers and society. The recipient is a leader in promoting awareness of ethical
and social issues in computing.”

About Cem Kaner

https://kaner.com

4Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

About Cem Kaner

5Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

www.satisfice.com

I started in this business as a programmer. I like programming. But I find the problems of

software quality analysis and improvement more interesting than those of software

production. For me, there's something very compelling about the question "How do I know

my work is good?" Indeed, how do I know anything is good? What does good mean? That's

why I got into SQA, in 1987. Today, I work with project teams and individual engineers to

help them plan SQA, change control, and testing processes that allow them to understand

and control the risks of product failure. I also assist in product risk analysis, test design, and

in the design and implementation of computer-supported testing. Most of my experience is

with market-driven Silicon Valley software companies like Apple Computer and Borland, so

the techniques I've gathered and developed are designed for use under conditions of

compressed schedules, high rates of change, component- based technology, and poor

specification.

About James Bach

http://www.satisfice.com

6Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

I've been teaching students of all ages – from Kindergarten to University – for the past 25

years. My primary interests are how people learn and how technology can make

educational efforts more effective and more accessible to more people. Until recently, I

served as an Assistant Professor of Education at Indiana State University and St.

Mary-of-the- Woods College, but to really get to the roots of effective design of online

education, especially for working professionals, it made more sense for me to go

independent and focus my own time as an independent consultant. I consult primarily

through Acclaro Research Solutions. Cem Kaner and I are co-Principal Investigators on the

National Science Foundation grant that subsidizes development of these courses. My Ph.D.

(University of Central Florida) concentrations were in Instructional Technology and

Curriculum. My dissertation research applied qualitative research methods to the use of

electronic portfolios. I also hold an M.B.A. in Management and a Bachelor of Music

(Education).

About Rebecca L. Fiedler

7Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

The BBST lectures evolved out of courses co-authored by Kaner & Hung Quoc Nguyen and by Kaner & Doug Hoffman, which we

merged with James Bach’s and Michael Bolton’s Rapid Software Testing (RST) courses. The online adaptation of BBST was

designed primarily by Rebecca L. Fiedler.

After being developed by practitioners, the course evolved through academic teaching and research largely funded by the

National Science Foundation. The Association for Software Testing served as our learning lab for practitioner courses. We also

evolved the 4-week structure with AST. We could not have created this series without AST’s collaboration. Since 2014, Altom has

been offering the course commercially. Starting with 2019, Altom has been maintaining and updating the course materials.

Many Thanks...

8Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

We also thank Jon Bach, Scott Barber, Bernie Berger, Ajay Bhagwat, Rex Black, Jack Falk, Elizabeth Hendrickson, Kathy Iberle, Bob

Johnson, Karen Johnson, Brian Lawrence, Brian Marick, John McConda, Melora Svoboda, dozens of participants in the Los Altos

Workshops on Software Testing, the Software Test Managers’ Roundtable, the Workshops on Heuristic & Exploratory

Techniques, the Workshops on Teaching Software Testing, the Austin Workshops on Test Automation and the Toronto

Workshops on Software Testing and students in AST and Altom courses for critically reviewing materials from the perspective of

experienced practitioners.

We also thank the many students and co-instructors at Florida Tech who helped us evolve the academic versions of this course,

especially Pushpa Bhallamudi, Walter P. Bond, Tim Coulter, Sabrina Fay, Ajay Jha, Alan Jorgenson, Kishore Kattamuri, Pat McGee,

Sowmya Padmanabhan, Andy Tinkham, and Giri Vijayaraghavan.

We also thank all instructors, practitioners and Altom employees who contribute to updating and developing new content for

this course series, especially Ancuța Bodnărescu, Alexandra Casapu, Oana Casapu, Ru Cindrea, Gabriel Dobrițescu, Zoltán

Molnár, Ray Oei, and Dolores Pente.

Many Thanks...

9Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Testing software involves investigating a product under tight

constraints. Our goal is to help you become a better investigator:

● Knowledge and skills important to testing practitioners

● Context-driven

○ Diverse contexts call for diverse practices.

○ We don’t teach “best practices.” Instead, we teach

practices that are useful in the appropriate

circumstances.

Our Approach

See https://kaner.com/?p=49

https://kaner.com/?p=49

10Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Understand key testing challenges that demand thoughtful tradeoffs by test

designers and managers

● Develop skills with several test techniques

● Choose effective techniques for a given objective under your constraints

● Improve the critical thinking and rapid learning skills that underlie good testing

● Communicate your findings effectively

● Work effectively online with remote collaborators

● Plan investments (in documentation, tools, and process improvement) to meet

your actual needs

● Create work products that you can use in job interviews to demonstrate testing

skill

BBST Learning Objectives

11Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Foundations Course Objectives
Learning about testing Improving academic skills

● Key challenges of testing:
○ Information objectives drive the testing mission and

strategy
○ Oracles are heuristic
○ Coverage is multidimensional
○ Complete testing is impossible
○ Measurement is important, but hard

● Introduce you to:
○ Basic vocabulary of the field
○ Basic facts of data storage and manipulation in

computing
○ Diversity of viewpoints
○ Viewpoints drive vocabulary

● Online collaboration tools:
○ Forums
○ Wikis

● Precision in reading

● Clear, well-structured communication

● Effective peer review

● Cope calmly and effectively with formative assessments
(such as tests designed to help you learn)
○ Assessment can be helpfully hard without being risky

12Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Every aspect of the course is designed to help you learn:

● Orientation exercises (readiness for learning)

● Video lectures

● Quizzes

● Labs and assignments (tasks that apply learning)

● Social interactions

● Peer reviews

● Study-guide driven exams

○ Exam prep forum

● Exam with an optional Interactive Grading session

Instructional Approach

13Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Course Overview: Fundamental Topics

 1. The Nature of Testing
Overview and Basic Definitions

 2. Why are we testing? What are we trying to learn? How should we organize our work
to achieve this? Information objectives drive the testing mission and strategy

 3. How can we know whether a program has passed or failed a test?
Oracles are heuristic

 4. How can we determine how much testing has been done? What core knowledge
 about program internals do testers need to consider this question?

Coverage is a multidimensional problem

 5. Are we done yet?
Complete testing is impossible

 6. How much testing have we completed and how well have we done it?
Measurement is important but hard

14Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Textbooks often define a “computer program” like this:

● A program is a set of instructions for a computer

What’s a Computer Program

15Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

That’s like defining a house like this:

● A house is a set of construction materials assembled according

to house-design patterns.

We’d rather define it as:

● A house is something built for people to live in.

This second definition focuses on the purpose and stakeholders of

the house, rather than on its materials.

What’s a Computer Program

16Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

A house is something built for people to live in.

The focus is on:

● Stakeholders (for people)

● Purpose (to live in)

What’s a Computer Program

Stakeholder

Any person affected by:

● success or failure of

a project,

● actions or inactions

of a product,

● effects of a service.

17Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

What’s a Computer Program

The narrow focus on the machine prepares Computer Science

students to make the worst errors in software engineering

— in their first two weeks of school.

18Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

A different definition for a computer program is:

● a communication

● among several humans and computers

● who are distributed over space and time,

● that contains instructions that can be executed by a computer.

What’s a Computer Program

The point of the

program is to

provide value

to the

stakeholders.

19Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Quality is inherently subjective.

● Different stakeholders will perceive the same product as

having different levels of quality.

● Testers look for different things ... for different stakeholders.

What Are We Really Testing For?

Quality is value to some person - Jerry Weinberg

20Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

An attribute of a software product:

● that reduces its value to a favored stakeholder

● or increases its value to a disfavored stakeholder

● without a sufficiently large countervailing benefit.

An error:

● May or may not be a coding error, or a functional error

Design errors are bugs too.

Software Error (AKA Bug)

21Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● is an empirical

● technical

● investigation

● conducted to provide stakeholders

● with information

● about the quality

● of the product or service under test.

Software Testing

We design and run

tests in order to

gain useful

information about

the product's

quality.

22Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Find important bugs
● Assess the quality of the product
● Help managers assess the progress of the project
● Help managers make release decisions
● Block premature product releases
● Help predict and control product support costs
● Check interoperability with other products
● Find safe scenarios for use of the product
● Assess conformance to specifications
● Certify the product meets a particular standard
● Ensure the testing process meets accountability standards
● Minimize the risk of safety-related lawsuits
● Help clients assess their product's quality and testability
● Help clients evaluate their processes and suggest/assess ways to improve them
● Evaluate the product for a third party

Testing Is Always a Search for Information

Different objectives

require different

testing tools and

strategies and will

yield different tests,

test documentation

and test results.

23Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Some people don’t like our definition of testing

○ They would rather call testing a hunt for bugs

○ Or a process for verifying that a program meets its specification

Try to reconcile THOSE two definitions!

● The different definitions reflect different visions of testing.

● Meaning is not absolute. Words mean what the people who say them intend

them to mean and what the people who hear them interpret them as meaning.

● Clear communication requires people to share definitions of the terms they use.

If you're not certain that you know what someone else means, ask them.

There Are No “Correct” Definitions

We would rather

embrace the genuine

diversity of our field

than try to use

standards committees

to hide it or legislate

it away.

24Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● We provide definitions for key concepts:

○ To limit ambiguity, and

○ To express clearly the ideas in our courses

● And we expect you to learn them.

● And we will test you on them. And give you bad test grades if you get them

“wrong.”

● We DON’T require you to accept our definitions as correct

OR as the most desirable definitions.

● We only require you to demonstrate that you understand what we are saying.

● In the “real world,” when someone uses one of these words,

ask them what THEY mean instead of assuming that they mean what WE mean.

We Use “Working Definitions”

We welcome

critical discussion

in our forums.

25Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

The tester designs tests from his (research-based) knowledge of the product’s

user characteristics and needs, the subject area (e.g. “insurance”), the product’s

market, risks, and environment (hardware/ software).

Some authors narrow this concept to testing exclusively against an authoritative

specification. (We don’t.)

Black Box Testing

The black box tester

becomes an expert in

the relationships

between the program

and the world in

which it runs.

Testing and test design without knowledge of the code (or without use of

knowledge of the code).

26Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Glass box testers typically ask:

● “Does this code do what the programmer expects or intends?”

In contrast to the black box question:

● “Does this do what the users (human and software) expect?”

Glass box is often called “white box” to contrast with “black box.”

Glass Box Testing

The glass box tester

becomes an expert in

the implementation of

the product under test.

Testing and test design using knowledge of the details of the internals of the

program (code and data).

27Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

People often ask us, “If there is black box testing and white box testing, what is grey

box testing?”

We don’t think there is a standard definition. “A blend of black box and white box

approaches” is not very informative. Examples of grey box:

● Studying variables that are not visible to the end user (e.g. log file analysis or

performance of subsystems)

● Designing tests to stress relationships between variables that are not visible to

the end user

Search the web for more examples of “grey box testing” descriptions. There are

thousands.

Grey Box Testing?

28Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Are “black box” or “glass box” test techniques?

We prefer to call them “approaches.”

Dictionary.com defines “technique” as:

● “The body of specialized procedures and methods used in any specific field, esp.

in an area of applied science.

● Method of performance; way of accomplishing.”

When someone says they'll do “black box testing,” you don't know what they'll actually

do, what tools they’ll use, what bugs they'll look for, how they'll look for them, or how

they'll decide whether they’ve found a bug. Some techniques are more likely to be used

in a black box way, so we might call these “black box techniques.” But it is the

technique (“usability testing”) that is black box, not “black box” that is the technique.

Are These “Techniques”?

https://www.dictionary.com/

29Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Behavioral Testing

Behavioral testing is useful when our purpose is to verify that the

program does what the programmer intended.

Behavioral testing is focused on the observable behavior

of the product.

30Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

As far as we can tell,

Structural Testing

structural testing is the same as glass box testing.

31Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Programmers typically describe unit testing as glass box testing, focused on individual
methods (functions) or individual classes.

Unit, Integration & System Testing

Unit tests focus on individual units of the product.

32Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

IEEE standard 1008 on software unit testing clarifies that a unit

● "may occur at any level of the design hierarchy from a single

module to a complete program."

If you think of it as one thing, and test it as one thing, it's a unit.

Unit, Integration & System Testing

Black box unit tests?

Imagine a code library

that specifies the

interfaces of its

functions but provides

no source code.

How does the

programmer try out a

function?

33Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

You can have:

● low-level integration (2 or 3 units) and

● high-level integration (many units, all the way up to tests of the complete,

running system).

Integration testing might be black box or glass box. Integration testers often use

knowledge of the code to predict and evaluate how data flows among the units.

Unit, Integration & System Testing

Integration tests study how two (or more) units work together.

34Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

"System testing is the process of attempting to demonstrate how the program does not

meet its objectives"

Unit, Integration & System Testing

 See Glen Myers (1979), The Art of Software Testing, p. 110

System testing focuses on the value of the running system.

35Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Typically it is glass box testing.

● Examples include unit tests, integration tests, tests of dataflows, and tests of

performance of specific parts of the program. These are all

implementation-level tests.

● Typically, implementation-level tests ask whether the program works as the

programmer intended or whether the program can be optimized in some way.

Implementation-Level vs. System-Level

Implementation-level testing is focused on the details of the implementation.

36Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

We analyze a function in terms of the inputs we can provide it and the outputs we

would expect, given those inputs.

Functional & Parafunctional

 See W.E. Howden, Functional Program Testing & Analysis, 1987

Functional testing is system-level testing that looks at the program as a

collection of functions. A “function” might be an individual feature or a broader

capability that relies on several underlying features.

37Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

In contrast to “functional testing”, people often refer to parafunctional or

nonfunctional testing. (Why parafunctional instead of nonfunctional? Calling tests

“nonfunctional” forces absurd statements, like “all the nonfunctional tests are now

working...”)

The concept of “functional testing” is fairly well defined, but parafunctional includes

anything “other than” (“para”) functional. Same for non-functional.

This includes testing attributes of the software that are general to the program rather

than tied to any particular function, such as usability, scalability, maintainability,

security, speed, localizability, supportability, etc.

Functional & Parafunctional

The concept of

parafunctional (or

non-functional) testing

is so vague as to be

dysfunctional.

We won’t often use it

in the course.

38Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

In early times, most software development was done under contract. A customer (e.g.

the government) hired a contractor (e.g. IBM) to write a program. The customer and

contractor would negotiate the contract. Eventually the contractor would say that the

software is done and the customer or her agent (such as an independent test lab)

would perform acceptance testing.

If software failed the tests, it was unacceptable and the customer would refuse to pay

for it until the software was made to conform to the promises in the contract (which

were what was checked by the acceptance tests).

Acceptance Testing #1

This is the

meaning we

will adopt in

this course.
Acceptance testing determines whether the software developed under a

contract should be accepted by the customer.

39Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

There really is no place for acceptance testing if there are no contract-based

requirements. (At least, not in the traditional sense of the word.) But many people use

the word anyway.

To them, “acceptance testing” refers to tests that might help someone decide whether

a product is ready for sale, installation on a production server, or delivery to a

customer. To us, this describes a developer’s decision (whether to deliver) rather than a

customer’s decision (whether to accept), so we won’t use this term this way. However, it

is a common usage, with many local variations. Therefore, far be it from us to call it

“wrong.” But when you hear or read about “acceptance testing”, don’t assume you

know what meaning is intended. Check your local definition.

Acceptance Testing #2

Bolton, http://www.developsense.com/presentations/2007-10-PNSQC-UserAcceptanceTesting.pdf

http://www.developsense.com/presentations/2007-10-PNSQC-UserAcceptanceTesting.pdf

40Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

Some companies have an independent in-house test group.

The key notion is that the independent testers aren’t influenced or pressured to

analyze and test the software in ways preferred by the developers.

Independent labs might be retained to do any type of testing, such as functional

testing, performance testing, security testing, etc.

Independent Testing

Testing done by a third party, often an external test lab.

41Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● BBST Quizzes are OPEN BOOK

● You are welcome to take the quiz while you watch the video or read the

materials.

● You can take the quiz with a friend (sit side by side or skype together)

● You may not copy someone else’s answers. If you use someone else’s answer

without figuring out yourself what the answer is, or working it out with a partner

(and actively engage in reasoning about it with your partner), you are cheating.

○ If you make an honest effort on the quizzes but score poorly, don’t panic.

The scores are for your feedback and to tell us who is trying to make

progress in the course. No one who has honestly attempted the quizzes

has ever failed the course because of low quiz grades.

Quiz Standards, Rules & Tips

42Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

The quizzes are designed to help you determine how well you understand the lecture

or the readings and to help you gain new insights from lecture/readings.

● We will make fine distinctions. (If you’re not sure of the answer, go back and

read again or watch the video)

● We will demand precise reading. (The ability to read carefully, make distinctions,

and recognize and evaluate inferences in what is read, is essential for analyzing

specifications. All testers need to build these skills.)

● We will sometimes ask you to think about a concept and work to a conclusion.

It is common for students to learn new things while they take the quiz.

Quiz Standards, Rules & Tips

43Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Typical question has 7 alternatives:

a. (a)

b. (b)

c. (c)

d. (a) and (b)

e. (a) and (c)

f. (b) and (c)

g. (a) and (b) and (c)

● Score is 25% if you select one correct of two (e.g. answer (a) instead of (d).)

● Score is 0 if you include an error (e.g. answer (d) when right answer is only (a).)

People usually remember the errors they hear from you more than they notice

what you omitted to say.

Quiz Standards, Rules & Tips

44Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

What is the significance of the difference between black box and glass box tests?

a. Black box tests cannot be as powerful as glass box tests because the tester

doesn't know what issues in the code to look for.

b. Black box tests are typically better suited to measure the software against the

expectations of the user, whereas glass box tests measure the program against

the expectations of the programmer who wrote it.

c. Glass box tests focus on the internals of the program whereas black box tests

focus on the externally visible behavior.

d. (a) and (b)

e. (a) and (c)

f. (b) and (c)

g. (a) and (b) and (c)

Sample Quiz Question

45Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

What is the significance of the difference between black box and glass box tests?

 b. Black box tests are typically better suited to measure the software against

 the expectations of the user, whereas glass box tests measure the program

 against the expectations of the programmer who wrote it.

 c. Glass box tests focus on the internals of the program whereas black box

 tests focus on the externally visible behavior.

○ This is factually correct, but irrelevant. The question doesn’t ask what the

difference is between black box and glass box. It asks “What is the

significance of the difference?”

Sample Quiz Question

These might seem

unfairly hard to

begin with, but you’ll

get better at them

with practice.

The underlying skills

have value.

46Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

According to the lecture, independent testing...

a. must be done by an outside company.

b. is a form of black box testing that is typically done by an outside test lab.

c. is typically done by an outside company (test lab) but can be done in-house if

the testers are shielded from influence by the development staff.

d. (a) and (b)

e. (a) and (c)

f. (b) and (c)

g. (a) and (b) and (c)

Sample Quiz Question

47Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

According to the lecture, independent testing…

 b. is a form of black box testing that is typically done by an outside test lab.

○ Answer (b) might be correct under other definitions of independent

testing but not in the definition “according to the lecture.”

○ The lecture includes any type of testing, as long it is independent.

 c. is typically done by an outside company (test lab) but can be done in-house

 if the testers are shielded from influence by the development staff.

Sample Quiz Question

Real-life example:

electronic voting

systems are subject

to code review and

glass box testing by

independent test

labs.

48Lecture 1 - Overview and Basic Definitions Copyright © 2022 Altom

● Our exams are closed book, essay style.
● We focus students’ work with essay questions in a study guide. We draw all

exam questions from this guide.
● We expect well-reasoned, well-presented answers. This is the tradeoff. You have

lots of time before the exam to develop answers. On the exam, we expect good
answers.

● We encourage students to develop answers together.
● Please don’t try to memorize other students’ answers instead of working on

your own. It’s usually ineffective (memorization errors lead to bad grades) and
you end up learning very little from the course.

● Please don’t post study guide questions and suggested answers on public
websites. That encourages students (in other courses) to memorize your
answers instead of developing their own. Even if someone could memorize all
your answers perfectly, and all your answers were perfect, this would teach
them nothing about testing. It would cheat them of the educational value of the
course.

About the Exam

49Lecture 2 - Strategy Copyright © 2022 Altom

Copyright © 2022 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Black Box Software Testing Foundations
Lecture 2
Strategy

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

50Lecture 2 - Strategy Copyright © 2022 Altom

Course Overview: Fundamental Topics

 1. The Nature of Testing
Overview and Basic Definitions

 2. Why are we testing? What are we trying to learn? How should we organize our work
to achieve this? Information objectives drive the testing mission and strategy

 3. How can we know whether a program has passed or failed a test?
Oracles are heuristic

 4. How can we determine how much testing has been done? What core knowledge
 about program internals do testers need to consider this question?

Coverage is a multidimensional problem

 5. Are we done yet?
Complete testing is impossible

 6. How much testing have we completed and how well have we done it?
Measurement is important but hard

51Lecture 2 - Strategy Copyright © 2022 Altom

Required

● Cem Kaner, Elisabeth Hendrickson & Jennifer Smith-Brock (2001), “Managing the Proportion of Testers to (Other)
Developers”, https://kaner.com/pdfs/pnsqc_ratio_of_testers.pdf

Useful to skim

● James Bach, “The Heuristic Test Strategy Model”, www.satisfice.com/tools/satisfice-tsm-4p.pdf

● Cem Kaner (2000), “Recruiting Software Testers”, https://kaner.com/pdfs/JobsRev6.pdf

● Jonathan Kohl (2010), “How Do I Create Value With My Testing?”, www.kohl.ca/blog/archives/000217.html

● Karl Popper (2002, 3rd Ed.), “Conjectures and Refutations: The Growth of Scientific Knowledge (Routledge Classics)”

Today’s Readings

https://kaner.com/pdfs/pnsqc_ratio_of_testers.pdf
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf
https://kaner.com/pdfs/JobsRev6.pdf
http://www.kohl.ca/blog/archives/000217.html

52Lecture 2 - Strategy Copyright © 2022 Altom

Testing is:

● "the process of executing a program with the intent of finding

errors." Glen Myers (1979, p. 5), Art of Software Testing

● "questioning a product in order to evaluate it." - James Bach

What Is Software Testing?

Some definitions

are simple and

straightforward.

53Lecture 2 - Strategy Copyright © 2022 Altom

"The process of operating a system or component under specified

conditions, observing or recording the results, and making an

evaluation of some aspect of the system or component." (IEEE

standard 610.12-1990)

"Any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required

results... Testing is the measurement of software quality." Bill Hetzel

(1988, 2nd ed., p. 6), Complete Guide to Software Testing.

What Is Software Testing?

Other

definitions

are a little

more complex.

54Lecture 2 - Strategy Copyright © 2022 Altom

● is an empirical

● technical

● investigation

● conducted to provide stakeholders

● with information

● about the quality

● of the product or service under test

Software Testing

55Lecture 2 - Strategy Copyright © 2022 Altom

An empirical

● We gain knowledge from the world, not from theory. (We call our experiments,

“tests.”)

● We gain knowledge from many sources, including qualitative data from

technical support, user experiences, etc.

technical

● We use technical means, including experimentation, logic, mathematics,

models, tools (testing-support programs), and tools (measuring instruments,

event generators, etc.)

Defining Testing

56Lecture 2 - Strategy Copyright © 2022 Altom

An empirical, technical...

... investigation

● An organized and thorough search for information

● This is an active process of inquiry. We ask hard questions (aka

run hard test cases) and look carefully at the results.

conducted to provide stakeholders

● Someone who has a vested interest in the success of the testing

effort

● Someone who has a vested interest in the success of the product

Defining Testing

A law firm suing a company for

having shipped defective software

has no interest in the success of

the product development effort

but a big interest in the success of

its own testing project (researching

the product’s defects).

57Lecture 2 - Strategy Copyright © 2022 Altom

An empirical, technical investigation conducted to provide

stakeholders...

...with information

● The information of interest is often about the presence (or

absence) of bugs, but other types of information are sometimes

more vital to your particular stakeholders.

● In information theory, “information” refers to reduction of

uncertainty. A test that will almost certainly give an expected

result is not expected to (and not designed to) yield much

information.

Defining Testing

Karl Popper argued that experiments

designed to confirm an expected

result are of far less scientific value

than experiments designed to

disprove (refute) the hypothesis that

predicts the expectation.

See his enormously influential book,

Conjectures & Refutations.

58Lecture 2 - Strategy Copyright © 2022 Altom

An empirical, technical investigation conducted to provide stakeholders with

information…

... about the quality

● Value to some person

of the product or service under test

● The product includes the data, documentation, hardware, whatever the customer

gets. If it doesn’t all work together, it doesn’t work.

● A service (such as custom programming) often includes sub-services (such as

support).

● Most software combines product & service.

Defining Testing

59Lecture 2 - Strategy Copyright © 2022 Altom

● Find important bugs
● Assess the quality of the product
● Help managers assess the progress of the project
● Help managers make release decisions
● Block premature product releases
● Help predict and control product support costs
● Check interoperability with other products
● Find safe scenarios for use of the product
● Assess conformance to specifications
● Certify the product meets a particular standard
● Ensure the testing process meets accountability standards
● Minimize the risk of safety-related lawsuits
● Help clients assess their product's quality and testability
● Help clients evaluate their processes and suggest/assess ways to improve them
● Evaluate the product for a third party

Many Different Information Objectives

Different objectives

require different

testing tools and

strategies and will

yield different tests,

test documentation

and test results.

60Lecture 2 - Strategy Copyright © 2022 Altom

Many Different Information Objectives

Different Context Different Information Objectives

Mass-market software, close to release date. The test

group believes the product is too buggy and that

better-informed stakeholders wouldn’t ship it.

These testers are likely to do bug-hunting, looking for

important bugs that will cause key whether they are willing to

release the product.

Software fails in use and causes serious losses. A law

firm hires testers to determine what caused the

failures and when the seller found these bugs.

These testers won’t do general bug-hunting.

They’ll try to determine how (and in how many ways) they can

replicate specific failures and they’ll study corporate quality

records.

61Lecture 2 - Strategy Copyright © 2022 Altom

Your “mission” is your answer to the question, “Why are you testing?”

● Typically, your mission is to achieve your primary information objective(s).

○ If there are too many objectives, you have a fragmented, and probably

unachievable, mission.

○ Awareness of your mission helps you focus your work. Tasks that help

you achieve your mission are obviously of higher priority (or should be)

than tasks that don’t help you achieve your mission.

Your Testing Mission

62Lecture 2 - Strategy Copyright © 2022 Altom

● The test group’s mission probably changes over the course of the project. For

example, imagine a 6-month development project, with first code delivery to

test in month 2.

● Month 2/3/4/5 may be bug-hunting.

○ Harsh tests in areas of highest risk

○ Exploratory scans for unanticipated areas of risk

● Month 6 may be helping the project manager determine whether the product is

ready to ship.

○ Status and quality assessments. Less testing.

○ Tests include coverage-oriented surveys.

Your Testing Mission(s)

Make your

mission explicit.

Be wary of trying

to achieve

several missions

at the same time.

63Lecture 2 - Strategy Copyright © 2022 Altom

`

Given a testing mission, how will you achieve it?

We define

● Strategy as the set of ideas that guide your test design

● Logistics as the set of ideas that guide your application of resources, and

● Plan as the combination of your strategy, your logistics and your project risk

management.

Testing Strategy

See Bach’s “Heuristic Test Planning: Context Model” http://www.satisfice.com/tools/satisfice-cm.pdf

http://www.satisfice.com/tools/satisfice-cm.pdf

64Lecture 2 - Strategy Copyright © 2022 Altom

`

Given a testing mission, how will you achieve it?

● The test strategy takes into account:

○ Your resources (time, money, tools, etc.)

○ Your staff’s knowledge and skills

○ What is hard/easy/cheap (etc.) in your project environment

○ What risks apply to this project

● To choose the best combination of resources and techniques

○ that you can realistically bring to bear

○ to achieve the your mission

○ as well as you can under the circumstances

Testing Strategy

See Bach’s “Heuristic Test Strategy Model”, https://www.satisfice.com/download/heuristic-test-strategy-model

https://www.satisfice.com/download/heuristic-test-strategy-model

65Lecture 2 - Strategy Copyright © 2022 Altom

Strategy and Design

● Who’s going to run these tests? (What are their skills/
knowledge)?

● What kinds of potential problems are they looking for?
● How will they recognize suspicious behavior or “clear”

failure? (Oracles?)
● What aspects of the software are they testing?

(What are they ignoring?)
● How will they recognize that they have done enough of this

type of testing?
● How are they going to test? (What are they actually going to

do?)

● What tools will they use to create or run or assess these
tests? (Do they have to create any of these tools?)

● What is their source of test data? (Why is this a good
source? What makes these data suitable?)

● Will they create documentation or data archives to help
organize their work or to guide the work of future
testers?

● What are the outputs of these activities? (Reports? Logs?
Archives? Code?)

● What aspects of the project context will make it hard to
do this work

Think of the design task as applying the strategy to the choosing of specific test techniques and generating test ideas and

supporting data, code or procedures:

66Lecture 2 - Strategy Copyright © 2022 Altom

Two Examples of Test Techniques

Scenario Testing Domain Testing

● Tests are complex stories that capture how the program will

be used in real-life situations.

● For every variable or combination of variables, consider the

set of possible values.

● These are combination tests, whose combinations are

credible reflections of real use.

● Reduce the set by partitioning into subsets. Pick a few

high-risk representatives (e.g. boundary values) of each

subset.

● These tests are highly credible (stakeholders will believe

users will do these things) and so failures are likely to be

fixed.

● These tests are very powerful. They are more likely to

trigger failures, but their reliance on extreme values makes

some tests less credible.

67Lecture 2 - Strategy Copyright © 2022 Altom

A test technique is like a recipe. It tells you how it puts together some ingredients.

Then you vary it to suit your needs.

A technique typically tells you how to do several (rarely all) of these:

● Analyze the situation

● Model the test space

● Select what to cover

● Determine test oracles

● Configure the test system

● Operate the test system

● Observe the test system

● Evaluate the test results

Test Techniques (Bach)

It takes several

different recipes

to create a

complete meal.

68Lecture 2 - Strategy Copyright © 2022 Altom

Domain Testing
Illustrates the Components of the Recipe

Analyze the situation We want to imagine the program as a collection of input and output variables. What are their
possible values?

Model the test space Follow a stratified sampling model, biased for higher probability of failure: For each variable, split
possible values into groups that are treated equivalently. Consider valid & invalid values.
Test at least one from each group, preferably the one most likely to show a failure. Next, test groups
of a few variables together, applying a similar analysis.

Select what to cover Which variables and combinations will we test?

Determine test oracles Do we look only for input-rejection or output overflow?

Configure the test system What equipment do we test on? Are we using tools to create tests? Execute them? Set everything up.

Operate the test system Execute the tests (e.g. run the automation)

Observe the test system Watch the execution of the tests. Is the system working correctly? (e.g. if human testers follow
scripts, what actually happens while they test this way?)

Evaluate the test results Did the program pass the tests?

69Lecture 2 - Strategy Copyright © 2022 Altom

So far today:

● Testing

● Stakeholders

● Information objectives

● Mission

● Strategy

● Test techniques

Next:

● How is the testing effort organized?

Review

70Lecture 2 - Strategy Copyright © 2022 Altom

SoftCo creates tax preparation software.

● Sell 100,000 copies per year

● Two planned updates (incorporating changes in the tax code

twice per year)

● Used by consumers and some paid preparers of tax returns

● Programming and testing are done within the company, at the

same corporate headquarters.

● Test group (4 or more testers) reports to its own manager.

How will this project work?

A “Typical” Context

This is like the

projects we had

in mind in

Testing Computer

Software.

71Lecture 2 - Strategy Copyright © 2022 Altom

SoftCo’s test group includes:

● Tester skilled with databases and calculations

● Bug-hunter

● Tool smith

● Tax lawyer (subject matter expert)

● Tester interested in network issues (including security & performance)

● Configuration tester

● Writer (writes test docs well)

● Test group manager

The details of this list

are less important

than the diversity of

this group. Everyone

is particularly good

at something.

Collectively, they will

be expert at testing

this class of

application.

See Kaner (2000), “Recruiting Software Testers”, https://kaner.com/pdfs/JobsRev6.pdf

A “Typical” Context: Typical Group

https://kaner.com/pdfs/JobsRev6.pdf

72Lecture 2 - Strategy Copyright © 2022 Altom

● Research ways this product can fail or be unsatisfactory (essentially a

requirements analysis from a tester’s point of view)

● Hunt bugs (exploratory risk-based testing)

● Analyze the specification and create tests that trace to spec items of interest

● Create sets of test data with well-understood attributes (to be used in several

tests and archived)

● Create reusable tests (manual or automated)

● Create checklists for manual testing or to guide automation

● Research failures and write well-researched, persuasive bug reports

A “Typical” Context: Typical Tasks

Most in-house

test groups

do most of

these tasks.

73Lecture 2 - Strategy Copyright © 2022 Altom

Along with “testing”, these testers are involved in a diverse set of quality-related activities and release-support activities. These

groups' scope varies over time and across test managers' and execs' attitudes.

A “Typical” Context: Tasks Over Time

Testers get notes on what changes are coming,
perhaps on a product-development group wiki. The
notes are informal, incomplete, and have conflicting
information. Testers ask questions, request testability
features, and may add suggestions based on technical
support data, etc.

Throughout the project, testers play with competitors’
products and/or read books/magazines about what
products like this should do.

Programmers deliver some working features (mods to
current shipping release) to testers. New delivery
every week (delivery every day toward the end of the
project).

Testers start testing (learn the new stuff, hunt for
bugs) and writing tests and test data for reuse.

Testers hang out with programmers to learn more
about this product’s risks.

Later in the project, some testers refocus, to write
status reports or run general regression tests, create
final release test.

Once the program stabilizes enough, design/run tests
for security, performance, longevity, huge databases
with interacting features’ data, etc.

Help close project’s details in preparation for release.

74Lecture 2 - Strategy Copyright © 2022 Altom

● Write requirements

● Participate in inspections and walkthroughs

● Compile the software

● Conduct glass box tests

● Write installers

● Configure and maintain programming-related tools, such as the source control

system

● Archive the software

● Investigate bugs, analyzing the source code to discover the underlying errors

● Evaluate the reliability of components that the company is thinking of using in

its software

● Provide technical support

● Demonstrate the product at trade shows or internal company meetings

A “Typical” Context: Less Common Tasks

Few test groups provide all

these services, but many

in-house test groups

provide several.

The more of these your

staff provides, the more

testers and the more

skill-set diversity you need.

See Kaner, Hendrickson &

Smith-Brock for discussion.

75Lecture 2 - Strategy Copyright © 2022 Altom

● Train new users (or tech support or training staff) in the use of the product

● Provide risk assessments

● Collect and report statistical data (software metrics) about the project

● Build and maintain internal test-related tools such as the bug tracking system

● Benchmark competing products

● Evaluate market significance of various hardware/software configurations (to

inform their choices of configuration tests)

● Conduct usability tests

● Lead or audit efforts to comply with regulatory or industry standards (such as

those published by SEI, ISO, IEEE, FDA, etc.)

● Provide project management services

A “Typical” Context: Less Common Tasks

These illustrate

tradeoffs between

“independence” and

“collaboration.” Groups

that see themselves as

fundamentally

independent provide a

narrower range of

services and have a

narrower range of

influence.

76Lecture 2 - Strategy Copyright © 2022 Altom

● The typical missions that I’ve encountered when working with in-house test

groups at mass-market software publishers have been much broader than

bug-hunting.

● We would summarize some of the most common ones as follows (Note: a single

testing project operates under one mission at a time):

○ Bug hunters

○ Quality advocacy

○ Development support

○ Release management

○ Support cost reduction

Missions (In-House)

Many group's missions

include their core goal

for their own staff.

For example, a group

might see the services

it provides as vehicles

to support the

education or career

growth of its staff.

77Lecture 2 - Strategy Copyright © 2022 Altom

● Several in-house IT organizations are reorganizing testing to try to get

comparable benefits.

● I have no sense of industry statistics because the people who contact me have a

serious problem and are willing to entertain my ideas on how to fix it.

● These managers complain about:

○ Ineffectiveness of their testers

○ Attention to process instead of quality

○ Lack of product/service knowledge

○ Lack of collaboration

Change of Context: In-House IT?

An executive at a huge

company explained to

me why they were

outsourcing testing.

“We can’t get good

testing from our own

staff. If I have to get

bad testing, I want it

cheap.”

78Lecture 2 - Strategy Copyright © 2022 Altom

People send their products for testing by an external lab for many

reasons:

● The lab might offer specific skills that the original development

company lacks.

● The customer (such as a government agency) might require a

vendor to have the software tested by an independent lab

because it doesn't trust the vendor.

● The company developing the software might perceive the

outsourcer's services as cheaper.

Change of Context: External Lab

79Lecture 2 - Strategy Copyright © 2022 Altom

Change of Context: External Lab

Difference Consequences

They might be more skilled with some
testing technology or at some specific
testing tasks

● They might be more effective in some types of tests, e.g. producing better
scripts (automated) faster for routine (e.g. domain) techniques

They don’t understand our market
(expectations, risks, needed benefits,
competitors) or the idiosyncratic priorities of
our key stakeholders.

● They probably won’t be as good at benefit-driven testing (e.g. scenario)
● Their exploratory tests will be less well informed by knowledge of this class of

product
● Usually they are focused on verification rather than validation
● Their design critiques in bug reports will be less credible and less welcome

They don’t have collaborative opportunities
with local developers and stakeholders

● They will need more supporting documentation
● They will generate more documentation and need it reviewed
● They will be unavailable or ineffective for collaborative bug fixing, release

management, etc.

When I talk of “bug advocacy”, friends whose experience is entirely “independent lab” think I am talking about pure “theory.”
Context constraints what tester roles are possible, and that shapes the possible missions.

80Lecture 3 - Oracles Copyright © 2022 Altom

Copyright © 2022 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Black Box Software Testing Foundations
Lecture 3
Oracles

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

81Lecture 3 - Oracles Copyright © 2022 Altom

Course Overview: Fundamental Topics

 1. The Nature of Testing
Overview and Basic Definitions

 2. Why are we testing? What are we trying to learn? How should we organize our work
to achieve this? Information objectives drive the testing mission and strategy

 3. How can we know whether a program has passed or failed a test?
Oracles are heuristic

 4. How can we determine how much testing has been done? What core knowledge
 about program internals do testers need to consider this question?

Coverage is a multidimensional problem

 5. Are we done yet?
Complete testing is impossible

 6. How much testing have we completed and how well have we done it?
Measurement is important but hard

82Lecture 3 - Oracles Copyright © 2022 Altom

Required

● Michael Bolton (2005), “Testing without a map”, http://www.developsense.com/articles/2005-01-TestingWithoutAMap.pdf

Useful to skim

● Michael Kelly (2006), “Using Heuristic Test Oracles”, http://www.informit.com/articles/article.aspx?p=463947

● Billy V. Koen (1985), Definition of the Engineering Method, American Society for Engineering Education (ASEE). (A later version
that is more thorough but maybe less approachable is Discussion of the Method, Oxford University Press, 2003).

● Elaine Weyuker (1980), “On testing nontestable programs”, https://www.ics.uci.edu/~redmiles/ics221-FQ03/papers/Wey82.pdf

● Ru Cindrea (2020), “5 Concepts from BBST that Will Help You Write More Powerful Automated Tests”,
https://bbst.courses/blog/bbst-concepts-that-will-help-you-create-powerful-automated-tests/

Today’s Readings

http://www.developsense.com/articles/2005-01-TestingWithoutAMap.pdf
http://www.informit.com/articles/article.aspx?p=463947
https://www.ics.uci.edu/~redmiles/ics221-FQ03/papers/Wey82.pdf
https://bbst.courses/blog/bbst-concepts-that-will-help-you-create-powerful-automated-tests/

83Lecture 3 - Oracles Copyright © 2022 Altom

There used to be two common description of oracles:

1. An oracle is a mechanism for determining whether the

program passed or failed a test.

2. An oracle is a reference program. If you give the same inputs

to the software under test and the oracle, you can tell whether

the software under test passed by comparing its results to the

oracle’s.

Once Upon A Time...

84Lecture 3 - Oracles Copyright © 2022 Altom

SUT: Software (or system) under test. Similarly for the application

under test (AUT) and the program under test (PUT).

Reference program: If we evaluate the behavior of the SUT by

comparing it to another program’s behavior, the second program is

the reference program or the reference oracle.

Comparator: the software or human that compares the behavior of

the SUT to the oracle.

A Little More Terminology

85Lecture 3 - Oracles Copyright © 2022 Altom

Oracle

Unfortunately, the ideas underlying the common oracle

definitions are wrong.

86Lecture 3 - Oracles Copyright © 2022 Altom

● “the oracle assumption [...] states that the tester is able to determine whether or not the output produced on the test
data is correct. The mechanism which checks this correctness is known as an oracle. […]

Intuitively, it does not seem unreasonable to require that the tester be able to determine the correct answer in some
‘reasonable’ amount of time while expanding some ‘reasonable’ amount of effort. Therefore, if either of the following
two conditions occur, a program should be considered nontestable.

1) There does not exist an oracle.

2) It is theoretically possible, but practically too difficult to determine the correct output.” (p. 1-2)

● “many, if not most programs are by our definition nontestable.” (p. 6)

See Weyuker, “On testing nontestable programs”, 1980 https://www.ics.uci.edu/~redmiles/ics221-FQ03/papers/Wey82.pdf

Oracle

https://www.ics.uci.edu/~redmiles/ics221-FQ03/papers/Wey82.pdf

87Lecture 3 - Oracles Copyright © 2022 Altom

When we describe testing as a

● process of comparing empirical results to expected results

we must consider that even the basic process of comparison

● requires human judgment, based on an understanding of

the problem domain.

The Need for Judgement

88Lecture 3 - Oracles Copyright © 2022 Altom

Comparison to a reference function is fallible. We only

control some inputs and observe some results (outputs).

For example, do you know whether test & reference systems

are equivalently configured?

● Does your test documentation specify ALL the

processes running on your computer?

● Does it specify what version of each one?

● Do you even know how to tell:

○ What version of each of these you are running?

○ When you (or your system) last updated each

one?

○ Whether there is a later update?

Can You Specify Your Test Configuration?

89Lecture 3 - Oracles Copyright © 2022 Altom

See Doug Hoffman https://pdfs.semanticscholar.org/4939/9c41364c832dadf491c11376bd7ca38e4a8b.pdf

A Model of a System Under Test

System under test

System state Program state, including
uninspected outputs

 Impacts on connected
devices/system resources

To other cooperating
processes, clients or servers

Monitored outputs

System stateProgram state,
including relevant data

 Configuration and system
resources

From other cooperating
processes, clients or servers

Intended inputs

https://pdfs.semanticscholar.org/4939/9c41364c832dadf491c11376bd7ca38e4a8b.pdf

90Lecture 3 - Oracles Copyright © 2022 Altom

Reference Programs Have Limited Values
Based on Notes From Doug Hoffman

System under test

System state Program state, including
uninspected outputs

 Impacts on connected
devices/system

resources

To other cooperating
processes, clients or

servers

Monitored outputs

System stateProgram state,
including relevant data

 Configuration and
system resources

From other cooperating
processes, clients or

servers

Intended inputs

Reference function

System state Program state, including
uninspected outputs

 Impacts on connected
devices/system

resources

To other cooperating
processes, clients or

servers

Monitored outputs

System stateProgram state,
including relevant data

 Configuration and
system resources

From other cooperating
processes, clients or

servers

Intended inputs

91Lecture 3 - Oracles Copyright © 2022 Altom

Selective attention and inattentional blindness

● Humans (often) don't see what they don't pay attention to

https://www.youtube.com/watch?v=Ahg6qcgoay4

● Programs don't see what they haven't been told to pay

attention to.

This is often the cause of irreproducible failures. We pay attention to

the wrong conditions.

● But we can't attend to all the conditions

Our Observations Can Fail in Many Ways

https://www.youtube.com/watch?v=Ahg6qcgoay4

92Lecture 3 - Oracles Copyright © 2022 Altom

1100 embedded diagnostics

● Even if we coded checks for each of these diagnostics

○ the side effects (data, resources, and timing)

○ would provide us a new context for Heisenberg

uncertainty.

“It works” really means “It appears to meet some requirement to

some degree.”

A Program Can Fail in Many Ways

Our tests cannot

practically

address all of the

possibilities

93Lecture 3 - Oracles Copyright © 2022 Altom

An Oracle Is a Heuristic

An oracle is a heuristic principle or mechanism by which you

recognize a potential problem.

94Lecture 3 - Oracles Copyright © 2022 Altom

Mainstream Engineering Relies
Fundamentally on Heuristics

● “A heuristic is anything that provides a plausible aid or direction in the solution of

a problem but is in the final analysis unjustified, incapable of justification, and

fallible. It is used to guide, to discover, and to reveal.” (p. 21)

● Heuristics do not guarantee a solution. (p. 22)

● “two heuristics may contradict or give different answers to the same question and

still be useful.” (p. 24)

● Heuristics permit the solving of unsolvable problems or reduce the search time to

a satisfactory solution. (p. 26)

● The heuristic depends on the immediate context instead of absolute truth as a

standard of validity. (p. 22)

 See Billy V. Koen, Definition of the Engineering Method, American Society for Engineering Education, 1985
 https://files.eric.ed.gov/fulltext/ED276572.pdf

“The engineering

method is the use of

heuristics to cause the

best change in a poorly

understood situation

within the available

resources” (p. 70)

https://files.eric.ed.gov/fulltext/ED276572.pdf

95Lecture 3 - Oracles Copyright © 2022 Altom

● A heuristic is a fallible idea or method that may you help simplify

and solve a problem.

● Heuristics can hurt you when used as if they were authoritative

rules.

● Heuristics may suggest wise behavior, but only in context. They

do not contain wisdom.

● Your relationship to a heuristic is the key to applying it wisely

Testing Is About Ideas.
Heuristics Give You Ideas.

“Heuristic reasoning

is not regarded as

final and strict but as

provisional and

plausible only, whose

purpose is to discover

the solution to the

present problem.”

George Polya,

How to Solve It

96Lecture 3 - Oracles Copyright © 2022 Altom

Fallible Decision Rules

How the tester interprets the test

The
actual
state
of the
program

Bug Feature

Bug Hit Miss

Feature False alarm Correct acceptance

Decisions based on oracles can be erroneous in two ways:

● Miss: We incorrectly conclude that the program passes because we miss the

incorrect behavior (or the software and the oracle are both wrong).

● False Alarm: We incorrectly conclude that the program failed because we

interpret correct behavior as incorrect.

A fallible decision rule can be subject to either type of error (or to both).

97Lecture 3 - Oracles Copyright © 2022 Altom

We often hear that most (or all) testing should be automated.

● Automated testing depends on our ability to programmatically

detect when the software under test fails a test.

● Automate or not, you must still exercise judgment in picking

risks to test against and interpreting the results.

● Automated comparison-based testing is subject to false alarms

and misses.

Oracles & Test Automation

Our ability to

automate testing

is fundamentally

constrained by

our ability to

create and use

oracles.

98Lecture 3 - Oracles Copyright © 2022 Altom

Does Font Size Work in Open Office?

What’s your oracle?

99Lecture 3 - Oracles Copyright © 2022 Altom

OK, So What About WordPad?

100Lecture 3 - Oracles Copyright © 2022 Altom

Compare WordPad to Word

Are they as similar as they look?

WordPad Word

101Lecture 3 - Oracles Copyright © 2022 Altom

Compare WordPad to Word

Highlighting Makes Relative Sizes More Obvious

Highlighting makes relative sizes more obvious.

WordPad Word

102Lecture 3 - Oracles Copyright © 2022 Altom

… Is it a difference that makes a difference?

The oracle highlights

 the fundamental role

 of judgment in testing.

Now That We See a Difference ...

Testing is a

cognitive activity

not a mechanical

activity.

103Lecture 3 - Oracles Copyright © 2022 Altom

● For Wordpad, we don’t care if font size meets precise

standards of typography!

● In general it can vastly simplify testing if we focus on whether

the product has a problem that matters, rather than whether

the product merely satisfies all relevant standards.

● Effective testing requires that we understand standards as

they relate to how our clients value the product.

Risk As a Simplifying Factor

Instead of thinking

about pass vs. fail,

consider thinking

problem vs. no

problem. Michael Kelly

(2006), “Using Heuristic

Test Oracles”

http://www.informit.com

/articles/article.aspx?

p=463947

http://www.informit.com/articles/article.aspx?p=463947
http://www.informit.com/articles/article.aspx?p=463947
http://www.informit.com/articles/article.aspx?p=463947

104Lecture 3 - Oracles Copyright © 2022 Altom

What if we applied the same evaluation approach

● that we applied to WordPad

● to Open Office or MS Word or Adobe InDesign?

In risk-based testing,

● we choose the tests that we think are

○ the most likely to expose a serious problem,

● and skip the tests that we think are

○ unlikely to expose a problem, or

○ likely to expose problems that no one would care about.

The same

evaluation

criteria lead to

different

conclusions in

different contexts

Risk As a Simplifying Factor

105Lecture 3 - Oracles Copyright © 2022 Altom

What would we examine if we were comparing font handling in professional

word processors?

Some examples:

● Every font size (to a tenth of a point)

● Every character in every font

● Every method of changing font size

● Every user interface element associated with font size

● Interactions between font size and other contents of a document

● Interactions between font size and every other feature

● Interactions between font sizes and graphics cards & modes

● Print vs. screen display

Risk As a Simplifying Factor

106Lecture 3 - Oracles Copyright © 2022 Altom

● What do you know about typography?

○ Definition of “point” varies. There are at least six different definitions

http://www.oberonplace.com/dtp/fonts/point.htm

○ Absolute size of characters can be measured, but not easily

 http://www.oberonplace.com/dtp/fonts/fontsize.htm

● How closely must size match to the chosen standard?

● Heuristic approaches, such as:

○ relative size of characters

○ comparison to MS Word

○ expectations of different kinds of users for different uses.

What Evaluation Criterion?

Testing is

about ideas.

Heuristics

give you ideas.

http://www.oberonplace.com/dtp/fonts/point.htm
http://www.oberonplace.com/dtp/fonts/fontsize.htm

107Lecture 3 - Oracles Copyright © 2022 Altom

We started with the traditional views:

● Testing is a process of comparing empirical results to expected results.

● An oracle is a mechanism for determining whether the program passed or failed a

test.

Four problems:

● Our expectations are not necessarily correct.

● Our expectations are not complete.

● A mismatch between result and expectation might not be serious enough to

report.

● Our expectations are not necessarily credible.

The traditional perspective doesn't work, but we still need, have, and use, test oracles.

Review

108Lecture 3 - Oracles Copyright © 2022 Altom

Consistent within product Function behavior consistent with behavior of comparable
functions or functional patterns within the product

Consistent with comparable
products

Function behavior consistent with that of similar functions in
comparable products

Consistent with history Present behavior consistent with past behavior

Consistent with our image Behavior consistent with an image the organization wants to
project

Consistent with claims Behavior consistent with documentation, specifications, or ads

Consistent with standards
or regulations

Behavior consistent with externally-imposed requirements

Consistent with user’s
expectations

Behavior consistent with what we think users want

Consistent with purpose Behavior consistent with product or function’s apparent
purpose

Consistency Oracles

All of these are

heuristics. They are

useful, but they are

not always correct

and they are not

always consistent

with each other.

109Lecture 3 - Oracles Copyright © 2022 Altom

Something seems inappropriate.
How can you explain to the programmers (or other stakeholders) that this is bad?

Consider: Consistency with purpose
● What's the point of this product? Why do we think people should use it? What

should they do with it?
● Does this error make it harder for them to achieve the benefits that they use

this product to achieve?
● Research the product’s benefits (books, interview experts, course examples,

specifications, marketing materials, etc.).
● Use these materials to decide what people want to gain from this product.
● Test to see if users can achieve these benefits. If not, write bug reports. Explain

what benefit you expect, why (cite the reference) you expect this, and then show
the test that makes it unachievable or difficult.

Use Consistency Oracles for Test Reporting

Tie the reports to

the facts and data

you collected in

your research

110Lecture 3 - Oracles Copyright © 2022 Altom

Example:

Consistency with purpose

● How do you know what the purpose of the product is?

● Even if you know (or think you know) the purpose, is your

knowledge credible? Will other people agree that your

perception of the purpose is correct?

Consistency Oracles Often Require Research

Junior testers are like children,

waiting for this type of information

to be handed to them, and whining

if they don't get it.

Competent testers ask for the

information, but if they don't get

it, they do their own research.

111Lecture 3 - Oracles Copyright © 2022 Altom

Consistency Oracles Often Require Research

Consistency with purpose

What questions should you ask in order to guide your research?

Here's an example of at least one aspect of the purpose of the product:

● What should people want to achieve from this type of product?

○ What is the nature of this task?

○ How do people do it in the world?

○ What do people consider “success” or “completion” in this type of task?

112Lecture 3 - Oracles Copyright © 2022 Altom

Consistency with purpose

What sources can you consult to answer these questions?

Here are a few examples...

● Internal documents: such as specifications, marketing documents

● Competing products: what they do and how they work (work with them, read

their docs and marketing statements) and published reviews of them

● Training materials, books, courses: for example, if you're testing a

spreadsheet, where do people learn how to use them? Where do people learn

about the things (e.g. balance sheets) that spreadsheets to help us create?

● Users: Read your company's technical support (help desk) records. Or talk with

real people who have been using your product (or comparable ones) to do real

tasks

Consistency Oracles Often Require Research

Credibility doesn't

come automatically

to you as a tester.

You have to earn it by

getting to know what

you are talking about.

113Lecture 3 - Oracles Copyright © 2022 Altom

● To guide bug evaluation

○ Why do I think something is wrong with this behavior?

○ Is this a bug or not?

● To guide reporting

○ How can I credibly argue that this is a problem?

○ How can I explain why I think this is serious?

● To guide test design

○ If I know something the product should be consistent with, I can predict

things the product should or should not do and I can design tests to

check those predictions.

Use Consistency Oracles

114Lecture 3 - Oracles Copyright © 2022 Altom

Another Look at Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

No Oracle
(automated
test or
incompetent
human)

● Doesn’t explicitly check results for
correctness (“Run till crash”)

● Can run any amount of data (limited by the time
the SUT takes)

● Useful early in testing. We generate tests
randomly or from a model and see what
happens

● Notices only spectacular failures
● Replication of sequence leading

to failure may be difficult

No oracle
(competent
human
testing)

● Humans often come to programs without
knowing what to expect from a particular
test. They figure out how to evaluate the
test while they run the test.

● See Bolton (2010), “Inputs and expected results”
www.developsense.com/blog/2010/05/a-transpe
ction-session-inputs-and-expected-results

● People don’t test with “no oracles.” They use
general expectations and product-specific
information that they gather while testing.

● Testers who are too
inexperienced, too insecure, or
too dogmatic to rely on their wits
need more structure.

Complete
Oracle

● Authoritative mechanism for determining
whether the program passed or failed

● Detects all types of errors
● If we have a complete oracle, we can run

automated tests and check the results against it

● This is a mythological creature:
software equivalent of a unicorn

http://www.developsense.com/blog/2010/05/a-transpection-session-inputs-and-expected-results/
http://www.developsense.com/blog/2010/05/a-transpection-session-inputs-and-expected-results
http://www.developsense.com/blog/2010/05/a-transpection-session-inputs-and-expected-results

115Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

Heuristic
Consistency
Oracles

● Consistent with
○ within product
○ comparable products
○ history
○ our image
○ claims
○ specifications or regulations
○ user expectations
○ purpose

● We can probably force-fit most or all other types
of oracles into this structure (classification
system for oracles)

● The structure illustrates ideas for test design
and persuasive test result reporting

● The structure seems too general
for some students (including
some experienced practitioners)

Partial ● Verifies only some aspects of the test
output

● All oracles are partial oracles

● More likely to exist than a Complete Oracle
● Much less expensive to create and use

● Can miss systematic errors
● Can miss obvious errors

116Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman And Michael Bolton

Oracles Description Advantages Disadvantages

Constraints ● Checks for
○ impossible values or
○ Impossible relationships

● Examples:
○ ZIP codes must be 5 or 9 digits
○ Page size (output format) must not

exceed physical page size (printer)
○ Event 1 must happen before Event 2
○ In an order entry system, date/time

correlates with order number

● The errors exposed are probably
straightforward coding errors that must be fixed

● This is useful even though it is insufficient

● Catches some obvious errors but
if a value (or relationship
between two variables’ values) is
incorrect but doesn’t obviously
conflict with the constraint, the
error is not detected

Familiar
failure
patterns

● The application behaves in a way that
reminds us of failures in other programs

● This is probably not sufficient in itself to
warrant a bug report, but it is enough to
motivate further research

● Normally we think of oracles describing how the
program should behave. (It should be consistent
with X.) This works from a different mindset
(“this looks like a problem,” instead of “this looks
like a match.”)

● False analogies can be distracting
or embarrassing if the tester files
a report without adequate
troubleshooting

117Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

Regression
Test Oracle

● Compare results of tests of this build with
results from a previous build. The prior
results are the oracle

● Verification is often a straightforward
comparison

● Can generate and verify large amounts of data
● Excellent selection of tools to support this

approach to testing

● Verification fails if the program’s
design changes (many false
alarms, but some tools reduce
false alarms)

● Misses bugs that were in
previous build or are not
exposed by the comparison

Self-
Verifying
Data

● Embeds correct answer in the test data
(such as embedding the correct response
in a message comment field or the correct
result of a calculation or sort in a
database record)

● CRC, checksum or digital signature

● Allows extensive post-test analysis
● Does not require external oracles
● Verification is based on contents of the message

or record, not on user interface
● Answers are often derived logically and vary

little with changes to the user interface
● Can generate and verify large amounts of

complex data

● Must define answers and
generate messages or records to
contain them

● In protocol testing (testing the
creation and sending of
messages and how the recipient
responds), if the protocol
changes we might have to
change all the tests

● Misses bugs that don't cause
mismatching result fields

118Lecture 3 - Oracles Copyright © 2022 Altom

The next several oracles are based on models.

● A model is a simplified, formal representation of a relationship,

process or system. The simplification makes some aspects of

the thing modeled clearer, more visible, and easier to work

with.

● All tests are based on models, but many of those models are

implicit. When the behavior of the program “feels wrong” it is

clashing with your internal model of the program and how it

should behave.

Models

119Lecture 3 - Oracles Copyright © 2022 Altom

● The physical process being emulated, controlled or analyzed by the software

under test

● The business process being emulated, controlled or analyzed by the software

under test

● The software being emulated, controlled, communicated with or analyzed by

the software under test

● The device(s) this program will interact with

● The reactions or expectations of the stakeholder community

● The uses/usage patterns of the product

● The transactions that this product participates in

● The user interface of the product

● The objects created by this product

What Might We Model in an Oracle?

120Lecture 3 - Oracles Copyright © 2022 Altom

Guides in Creating a Model

What aspects of the things we model might guide our creation of a model?

● Capabilities

● Preferences

○ Competitive analysis

○ Support records

● Focused chronology

○ Achievement of a task or life history of an object or

action

● Sequences of actions

○ Such as state diagrams or other sequence diagrams

○ Flow of control

● Flow of information

○ Such as data flow diagrams or protocol diagrams or maps

● Interactions/dependencies

○ Such as combination charts or decision trees

○ Charts of data dependencies

○ Charts of connections of parts of a system

● Collections

○ Such as taxonomies or parallel lists

● Motives

○ Interest analysis: Who is affected, how, by what?

121Lecture 3 - Oracles Copyright © 2022 Altom

● The representation (the model) is simpler than what is

modeled: It emphasizes some aspects of what is modeled

while hiding other aspects.

● You can work with the representation to make descriptions or

predictions about the underlying subject of the model.

● Using the model is easier or more convenient to work with, or

more likely to lead to new insights than working with the

original.

What Makes These Models, Models?

122Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

State Model ● We can represent programs as state
machines. At any time, the program is in
one state and (given the right inputs) can
transition to another state. The test
provides input and checks whether the
program switched to the correct state

● Good software exists to help test designer build
the state model

● Excellent software exists to help test designer
select a set of tests that drive the program
through every state transition

● Maintenance of the state
machine can be very expensive
(e.g. the model changes when the
program’s UI changes.)

● Does not (usually) try to drive the
program through state
transitions considered impossible

● Errors that show up in some
other way than bad state
transition can be invisible to the
comparator

Interaction
Model

● We know that if the SUT does X, some
other part of the system (or other system)
should do Y and if the other system does
Z, the SUT should do A

● To the extent that we can automate this, we can
test for interactions much more thoroughly than
manual tests

● We are looking at a slice of the
behavior of the SUT so we will be
vulnerable to misses and false
alarms

● Building the model can take a lot
of time. Priority decisions are
important

123Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

Calculation
Oracle

● We use calculation oracles to check the
calculations of a program. For example:
○ if the program adds 5 numbers, we

can use some other program or
library to add the 5 numbers and see
what we get

○ or do the same calculations in
different ways e.g.
2*3=3*2=2+2+2=3+3

● Good for
○ mathematical functions

● To obtain the predictable results,
we might have to create a
difficult-to-implement reference
program if we can’t find a library
that we can use to do the
calculations.

● Available only for
computationally predictable
results

Inverse Oracle ● The inverse oracle is often a special case
of a calculation oracle (the square of the
square root of 2 should be 2) but not
always. For example
○ imagine taking a list that is sorted low

to high, sorting it high to low and
then sorting it low to high. Do we get
back the same list?

● Good for
○ straightforward transformations
○ invertible operations of any kind

● Available only for invertible
operations

124Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

Business
Model

● We understand what is reasonable in this
type of business. For example,

● We might know how to calculate a tax (or
at least that a tax of $1 is implausible if
the taxed event or income is $1 million)

● We might know inventory relationships. It
might be absurd to have 1 box top and 1
million bottoms

● These oracles are probably expressed as
equations or as plausibility-inequalities (“it is
ridiculous for A to be more than 1000 times B”)
that come from subject-matter experts.
Software errors that violate these are probably
important (perhaps central to the intended
benefit of the application) and likely to be seen
as important

● There is no completeness
criterion for these models

● The subject matter expert might
be wrong in the scope of the
model (under some conditions,
the oracle should not apply and
we get a false alarm)

● Some models might be only
temporarily true

Theoretical
(e.g. Physics
Or Chemical)
Model

● We have theoretical knowledge of the
proper functioning of some parts of the
SUT. For example, we might test the
program’s calculation of a trajectory
against physical laws

● Theoretically sound evaluation
● Comparison failures are likely to be seen as

important

● Theoretical models (e.g. physics
models) are sometimes only
approximately correct for
real-world situations

125Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

Reference
Program

● Generates the same responses to a set of
inputs as expected from the SUT

● The behavior of the reference program
will differ from the SUT in some ways
(they would be identical in all ways only if
they were the same program), e.g.
○ the time it takes to add 1000

numbers might be different in the
reference program versus the SUT,
but if they yield the same sum, we
can say that the SUT passed the test.

● Gives a straightforward mechanism for
determining whether the program passed or
failed a test, especially when evaluating the
result of a test would be a complex task, e.g.
○ when the program uses complex algorithms

to calculate the correct result.

● Testers might miss bugs if the
reference program contains the
same bug as the SUT

Statistical ● Checks against probabilistic predictions,
such as:
○ 80% of online customers have

historically been from these ZIP
codes; what is today’s distribution?

○ X is usually greater than Y
○ X is positively correlated with Y

● Allows checking of very large data sets
● Allows checking of live systems’ data
● Allows checking after the fact

● False alarms and misses are both
likely (Type 1 and Type 2 errors)

● Can miss obvious errors

126Lecture 3 - Oracles Copyright © 2022 Altom

More Types of Oracles
Based on Notes from Doug Hoffman

Oracles Description Advantages Disadvantages

Data Set with
Known
Characteristics

● Rather than testing with live data, create a
data set with characteristics that you
know thoroughly. Oracles may or may not
be explicitly built in (they might be) but
you gain predictive power from your
knowledge

● The test data exercise the program in the ways
you choose (e.g. limits, interdependencies, etc.)
and you (if you are the data designer) expect to
see outcomes associated with these built-in
challenges

● The characteristics can be documented for other
testers

● The data continue to produce interesting results
despite many types of program changes

● Known data sets do not
themselves provide oracles

● Known data sets are often not
studied or not understood by
subsequent testers (especially if
the creator leaves) creating
Cargo Cult level testing

Hand Crafted ● Result is carefully selected by test
designer

● Useful for some very complex SUTs
● Expected result can be well understood

● Slow, expensive test generation
● High maintenance cost
● Maybe high test creation cost

Human ● A human decides whether the program is
behaving acceptably

● Sometimes this is the only way. “Do you like how
this looks?” “Is anything confusing?”

● Slow and subjective
● Credibility varies with the

credibility of the human

127Lecture 3 - Oracles Copyright © 2022 Altom

● Test oracles can only sometimes provide us with authoritative

failures.

● Test oracles cannot tell us whether the program has passed

the test, they can only tell us it has not obviously failed.

● Oracles subject us to two possible classes of errors:

○ Miss: The program fails but the oracle doesn’t expose it

○ False Alarm: The program did not fail but the oracle

signaled a failure

Summing Up

Tests do not

provide complete

information. They

provide partial

information that

might be useful.

128Lecture 3 - Oracles Copyright © 2022 Altom

It’s time to start working through the Exam Prep questions. You’ll

learn more by working through a few questions each week than by

cramming just before the exam.

The goal is to help you focus your studying and to think carefully

through your answers:

● Early work helps you identify confusion or ambiguity

● Early drafting makes peer review possible

Note: The exam is closed book, and takes all of its questions from

the Exam Prep set.

About the Exam

129Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Copyright © 2022 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Black Box Software Testing Foundations
Lecture 4
Programming Fundamentals and Coverage

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

130Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Course Overview: Fundamental Topics

 1. The Nature of Testing
Overview and Basic Definitions

 2. Why are we testing? What are we trying to learn? How should we organize our work
to achieve this? Information objectives drive the testing mission and strategy

 3. How can we know whether a program has passed or failed a test?
Oracles are heuristic

 4. How can we determine how much testing has been done? What core knowledge
 about program internals do testers need to consider this question?

Coverage is a multidimensional problem

 5. Are we done yet?
Complete testing is impossible

 6. How much testing have we completed and how well have we done it?
Measurement is important but hard

131Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Required

● Cem Kaner (1995), “Software Negligence & Testing Coverage”, https://kaner.com/pdfs/negligence_and_testing_coverage.pdf

● Brian Marick (1997), “How to Misuse Code Coverage”, http://www.exampler.com/testing-com/writings/coverage.pdf

Useful to skim

● David Goldberg (1991), “What Every Computer Scientist Should Know About Floating-Point Arithmetic”,
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

● Brian Marick (1991), “Experience With the Cost of Different Coverage Goals for Testing”,
http://www.exampler.com/testing-com/writings/experience.pdf

● Charles Petzold (1993), Code: The Hidden Language of Computer Hardware and Software.

Today’s Readings

https://kaner.com/pdfs/negligence_and_testing_coverage.pdf
http://www.exampler.com/testing-com/writings/coverage.pdf
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.exampler.com/testing-com/writings/experience.pdf

132Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Why teach this material now?

Most discussions of “coverage” in testing involve structural coverage.

To understand what people are talking about:

● what these types of coverage actually measure

● what types of tests people emphasize in order to achieve

coverage

● what risks are not addressed by these types of coverage

you need a bit of knowledge of data representation and program

structure.

Computing Fundamentals

133Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Read this book

Computing Fundamentals

134Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● Basic storage and arithmetic (Decimal)

○ Decimal numbers

○ Addition

○ Overflow

○ Integers vs floating point

● Basic storage and arithmetic (Binary)

○ Representation

○ Addition

○ Overflow

○ Floating point

● Alphanumeric and other characters

How Do Computers Store Data?

135Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Digits: We have 10 of them.

So we can count:

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

But instead of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 we use the following

 Decimals numerals:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Decimal Numbers

136Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Decimal arithmetic:

● “Decimal” refers to 10 (like counting on your 10 fingers).

● Base 10 arithmetic represent numbers as a sum of powers of 10:

○ 100 = 1

○ 101 = 10

○ 102 = 10 x 10 = 100

○ 103 = 10 x 10 x 10 = 1000

10 = 1 x 101 + 0 x 100

954 = 9 x 102 + 5 x 101 + 4 x 100

(Special case: 0 = 0)

Decimal Numbers

137Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Consider

654 = 6 x 102 + 5 x 101 + 4 x 100

243 = 2 x 102 + 4 x 101 + 3 x 100

To add them,

● Add 4 x 100 and 3 x 100 = 7 x 100

● Add 5 x 101 and 4 x 101 = 9 x 101

● Add 6 x 102 and 2 x 102 = 8 x 102

So, 654 + 243 = 897

Adding Decimal Numbers

138Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We “carry the 1”.

That is, we add 1

times the next

higher power of 10

Consider the following 1-digit decimal numbers.

6 = 6 x 100

7 = 7 x 100

To add them,

● 6 + 7 is larger than the largest decimal numeral

● 6 + 7 = 6 + (4 + 3)

 = (6 + 4) + 3

 = 10 + 3

 = 1 x 101 + 3 x 100

 = 13

 a 2-digit decimal number

Overflow

139Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Rather than counting fingers (and toes), let's imagine boxes with 10

sides (labeled 0 through 9). We carry the 1, give us 1 in the tens' box

(101) and 3 in the ones' box (100).

Overflow

1 3

100101

=13

140Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Even Bigger Numbers

Thousands

0 0

102103

0 0

100101

Hundreds Tens Ones

141Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

If we store numbers in a device that can handle up to four decimal

digits, we can store numbers from:

Overflow

0 0

102103

0 0

100101

to:

9 9 9 9

142Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We can add numbers

+

=

Overflow

0 4 5 6

102103 100101

0 1 2 3

0 5 7 9

143Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We can add numbers that overflow a digit. For example:

Overflow

0 6 7 8

0 7 5 3

1 4 3 1

+

=

8 x 100 + 3 x 100

7 x 101 + 5 x 101 + 1 x 101 (carried from 8+3)
6 x 102 + 7 x 102 + 1 x 102 (carried from 7+5+1)
0 x 103 + 0 x 103 + 1 x 103 (carried from 6+7+1)

= 1 x 101 + 1 x 100

= 1 x 102 + 3 x 101

= 1 x 103 + 4 x 102

= + 1 x 103

102103 100101

144Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

But what happens if we overflow the highest digit?

Overflow

6 3 3 3

7 4 4 4

? ? ? ?=

+

3 x 100 + 4 x 100

3 x 101 + 4 x 101 + 0 x 101 (nothing carried)
3 x 102 + 4 x 102 + 0 x 102 (nothing carried)
6 x 103 + 7 x 103 + 0 x 103 (nothing carried)
BUT WE DON’T HAVE A 104 DIGIT

= 0 x 101 + 7 x 100

= 0 x 102 + 7 x 101

= 0 x 103 + 7 x 102

= 1 x 104 + 3 x 103

102103 100101

145Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We Can Also Represent Fractions

0.02345
0.2345
2.345
23.45
234.5
2345.

= 2 x 10-2 + 3 x 10-3 + 4 x 10-4 + 5 x 10-5

= 2 x 10-1 + 3 x 10-2 + 4 x 10-3 + 5 x 10-4

= 2 x 100 + 3 x 10-1 + 4 x 10-2 + 5 x 10-3

= 2 x 101 + 3 x 100 + 4 x 10-1 + 5 x 10-2

= 2 x 102 + 3 x 101 + 4 x 100 + 5 x 10-1

= 2 x 103 + 3 x 102 + 4 x 101 + 5 x 100

● 10-3

● 10-2

● 10-1

● 100

● 101

● 102

● 103

= 1/1000
= 1/100
= 1/10
= 1
= 10
= 100
= 1000

Base 10 arithmetic represent numbers as a sum of powers of 10:

146Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

In a fixed-point representation, the decimal point stays “fixed”

(same place) no matter how large or small the number.

Fixed Point Representation

0.02345

0.2345

2.345

23.45

234.5

2345.0

23450.0

234500.0

= 2 x 10-2 + 3 x 10-3 + 4 x 10-4 + 5 x 10-5

= 2 x 10-1 + 3 x 10-2 + 4 x 10-3 + 5 x 10-4

= 2 x 100 + 3 x 10-1 + 4 x 10-2 + 5 x 10-3

= 2 x 101 + 3 x 100 + 4 x 10-1 + 5 x 10-2

= 2 x 102 + 3 x 101 + 4 x 100 + 5 x 10-1

= 2 x 103 + 3 x 102 + 4 x 101 + 5 x 100

= 2 x 104 + 3 x 103 + 4 x 102 + 5 x 101

= 2 x 105 + 3 x 104 + 4 x 103 + 5 x 102

147Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Fixed point representation in a computer is essentially the same as

integer storage.

● We have a limited set of number blocks and we can't go

beyond them.

● We call these our “significant digits”.

● The difference is that we get to choose (once, for all numbers)

where the decimal point goes.

● For example, $1234.56 is a six-significant-digit fixed-point

number. We cannot represent a number larger than $9999.99

or currency subdivisions finer than a penny (1/100th).

Fixed Point Representation

148Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

In fixed-point, we can choose where we place the decimal point.

Here for example: “All numbers in thousands”.

Fixed Point Representation

149Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

2.345
= 2 x 100 + 3 x 10-1 + 4 x 10-2 + 5 x 10-3

= 10-3 x 2345
= 10-3 x (2 x 103 + 3 x 102 + 4 x 101 + 5 x 100)

So we can represent “any” 4-digit number
● as an Integer (a number with no decimal point).
● multiplied by 10 to the appropriate power.

In 2345 x 10-3

● 2345 is called the mantissa or the significand
● there are 4 significant digits
● 10 is called the base
● -3 is called the exponent

2,345,000,000 = 2345 x 106

Floating Point

A significant digit

is a digit we allow

to have a value

other than zero.

150Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

As a matter of convention, we usually show the mantissa with a decimal point after the

most significant digit:

● Each number has 4 significant digits

● Each has the same mantissa (2.345)

● Each has the same base

● Only the exponent is varying

Floating Point

0.02345

2.345

2345.

234500000

= 2.345 x 10-2

= 2.345 x 100

= 2.345 x 103

= 2.345 x 108

151Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Now consider this example again:

+

=

The sum is 13777, which overflows the 4 significant digits.

In floating point notation, it is 1.3777 x 104.

This is still too many digits, but we can round up: 1.378 x 104.

Overflow and Floating Point

6 3 3 3

7 4 4 4

? ? ? ?

102103 100101

152Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We still can’t represent 1.378 x 104 in four digits.

But what if we added a box for the exponent and a box for the exponent’s sign?

= 104 x (1 x 100 + 3 x 10-1 + 7 x 10-2 + 8 x 10-3)

In this way, we can represent a number

● as small as 10-9 x 1.000 (0.000000001) and

● as large as 109 x 9.999 (9999000000.0).

Overflow, Floating Point and Rounding

+ 4 1 3 7 8

ExpSign 10-1100 10-2 10-3

153Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We can represent a number
● as small as 10-9 x 1.000 (0.000000001)
● as large as 109 x 9.999 (9999000000.0)

However, we have only 4 significant digits.

Suppose we entered:
● 9999000000.0,
● 9999000001.0, and
● 9999499999.0

How will the computer store these?
In a floating point representation with 4 significant digits, all would
be stored the same way, as 9.999 x 109.

Significant Digits and Precision

154Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Significant Digits and Precision

Which is the bigger error?

Saying that 2.000 is 1.9999?

OR

Saying that 1.99975 is 2.000?

155Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● If we want to represent a larger range of numbers, we can change the number

of digits in the Exponent.

○ With two digits, we can go from 10-99 x 0001 to 1099 x 9999

● If we want negative numbers (in the significand) as well as positive, we can add

another box for the sign of the main number.

Overflow, Floating Point and Rounding

1099 x -9999 to

10-99 x -1 to

0 to

10-99 x 1 to

1099 x 9999

- 1 1 + 1 3

ExpSign SignExp 103 102

7

101

8

100

156Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

With this system for representing numbers,

a) What is the sum of

 1234 x 1010

 + 5678 x 10-10 ?

b) What is the product of

 1234 x 1010

 x 12 ?

In that multiplication, assume we could never store more than 4

digits at any time.

Floating Point and Rounding Error

157Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● A simpler approach to digits:

○ Instead of counting from 0 to 9 (decimal),

consider counting from

 0 to 1 (binary).

● We call binary digits “bits”.

● We also call the physical portion of computer memory

needed to store a 0-or-1 a “bit”.

Binary Numbers

158Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Binary refers to 2 (like counting with one finger that goes up or down).

Base 2 arithmetic represent numbers as a sum of powers of 2:

● 20 = 1

● 21 = 2

● 22 = 4

● 23 = 8

15 = 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

Binary Arithmetic

1 1

2223

1 1

2021

159Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Bytes (8 Bits)

0

2627 2425

0

2223 2021

0 0 0 0 0 0

0 00 0 0 0 0 1

0 00 0 0 1 0 0

0 00 0 0 1 0 1

0 00 1 0 0 0 0

0 01 0 0 0 0 0

00 01 0 0 0 0

1 00 0 0 1 0 0

11 11 1 1 1 1

0

1

4

5

32

64

128

132

255

160Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Consider 8-bit binary numbers:

Just like 5+5 = 10 (carry the 1) in decimal arithmetic (because there is

no digit bigger than 9), 1+1 = 10 in binary (because there is no digit

bigger than 1).

Adding Binary Numbers

 1 + 1 = 00000001 (1)

 + 00000001 (1)

 = 00000010 (2)

17 + 15 = 00010001 (17)

 + 00001111 (15)

 = 00100000 (32)

161Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● The biggest number you can fit in a byte is

11111111 = 255.

● To deal with larger numbers, we either have to

work with larger areas of memory (such as 16-bit

or 32-bit words) or we have to work with floating

point.

● We’ll address both soon...

● But first, let’s consider positives and negatives.

“In computing, word is a term for
natural unit of data used by a
particular computer design. A word is
simply a fixed sized group of bits that
are handled together by the system.
The number of bits in word (the word
size or word length) is an important
characteristic of computer
architecture.”

https://en.wikipedia.org/wiki/
Word_(computer_architecture)

Overflow

255 + 1 = 11111111 (255)

+ 00000001 (1)

= overflow (256)

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://en.wikipedia.org/wiki/Word_(computer_architecture)

162Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

See https://en.wikipedia.org/wiki/Two%27s_complement

Rather than interpreting the first (leftmost) bit in a binary number as a

digit, we can interpret it as a sign bit.

● 00000001 is 1

● 01111111 is 127

● 10000000 is -128

● 11111111 is -1

Unsigned Versus Signed

0

26Sign 2425

0

2223 2021

0 00 0 0 0 0

https://en.wikipedia.org/wiki/Two%27s_complement

163Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● Computers read memory several bits at a time.

● A word is the amount of memory typically read in one fetch

operation.

○ The Apple 2 computers read memory 1 byte at a time. Its

word size was 1 byte.

○ The original IBM computers read memory in blocks of 16

bits at a time. Their word size was 16 bits.

○ Most modern computers operate on 32 or 64 bits at a

time, so their word size is 32 or 64 bits.

8, 16, 32 & 64-Bit Words

164Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

A computer with a 32-bit word size can operate on smaller blocks of

memory.

● It might work with 8 or 16 bits.

● Unless you are testing new chips in development, the program

is unlikely to

○ read or work with the wrong number of bits.

○ read or write one too many or one too few bytes

(it will read 8, not 7 or 9).

Words

165Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Textbook examples for integers typically use 8-bit or

16-bit words.

● With 16 bits, MaxInt is

○ 32767 with signed integers

○ 65535 with unsigned integers

● MinInt is

○ -32768 if integers are signed

○ 0 if integers are unsigned

Integers

It is usually a mistake to

assume you know the value of

MaxInt. Even if you know it

today, the system will change

and MaxInt will change with it.

Design your tests (and code)

using MinInt and MaxInt, not

numeric constants.

166Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Integers: Java

Size Range

Bytes Bits MinInt MaxInt

byte 1 8 -128 127

short 2 16 -32,768 32,767

int 4 32 -2,147,483,648 2,147,483,647

long 8 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

167Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

`See https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html and Petzold, Code, Chapter 23.

Note: Exponent values of 0 and 255 have special meanings. For details, see discussions
of the IEEE specification for floating point numbers.

Floating Point (Single Precision)

32-bit number

Leftmost bit:
sign bit

Next 8 bits:
exponent

Next 23 bits: mantissa
(aka significand)

0 is positive
1 is negative

-126 to 127
(see note)

1.175494351 x 10-38 to
3.402823466 x 1038

http://docs.sun.com/source/806-3568/ncg_goldberg.html

168Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

`See https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html and Petzold, Code, Chapter 23.

Note: Exponent values of 0 and 2047 have special meanings. For details, see
discussions of the IEEE specification for floating point numbers.

64-bit number

Leftmost bit:
sign bit

Next 11 bits:
exponent

Next 52 bits:
mantissa

0 is positive
1 is negative

-1022 to 1023
(see note)

2.2250738585072014 x 10-308 to
1.7976931348623158 x 10308

Floating Point (Double Precision)

http://docs.sun.com/source/806-3568/ncg_goldberg.html

169Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Hexadecimal Numbers
Decimal Binary Hexadecimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Decimal Binary Hexadecimal

16
17
31
32
63
64

100
112
128
144
160
176
192
208
224
255

00010000
00010001
00011111
00100000
00111111
01000000
01100100
01110000
10000000
10010000
10100000
10110000
11000000
11010000
11100000
11111111

10
11
1F
20
2F
40
64
70
80
90
A0
B0
C0
D0
E0
FF

170Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● American Standard code for Information Interchange

● Encoding for teletypes

○ Code 7 says to ring the TTY bell

○ Code 11 calls for a vertical tab

● Codes 0 to 31 are commands (non-printing characters)

● Code 32 is for Space character

● Code 33 is for !

● Code 47 is for /

● Codes 48 – 57 are for digits 0 to 9

● Codes 65 – 90 for A to Z

● Codes 97 – 122 for a to z

See http://www.asciitable.com and http://en.wikipedia.org/wiki/Unicode

Alphanumeric Representation: ASCII

Desaturated and cropped. Original photo:
https://www.flickr.com/photos/ajmexico/4669611994/

http://www.asciitable.com/
http://en.wikipedia.org/wiki/Unicode
https://www.flickr.com/photos/ajmexico/4669611994/

171Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● What a bit pattern in memory means depends on how the

program reading it interprets it.

● The same bit pattern might be:

○ An integer

○ A floating point number

○ A character or sequence of characters

○ A command

○ An address (identifies a location in memory)

● The same pattern in the same location might be read

differently by different functions.

Same Data, Different Meanings

172Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● A data structure is a way of organizing data. We select a data

structure to optimize some aspect of how software will work

with it.

● So far, we’ve seen primitive data types:

○ Integers, floating point numbers, characters, bits

● We can group primitives together in meaningful ways, such as:

○ Strings

○ Records

○ Arrays

○ Lists

Data Structures

This scratches

the surface.

The goal is merely

to familiarize you

with some of

the variety of

ideas.

173Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● A sequence of characters

● Each character comes from the same alphabet (set of

acceptable symbols)

● Commonplace operations:

○ Search for a substring

○ Replace one substring with another

○ Concatenate (add one string to another. For example,

One ⊕ string = Onestring)

○ Calculate length

○ Truncate

Data Structures: String

Common errors

● Overflow

● Match or

mismatch

174Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● Related data, stored together

○ First name

○ Last name

○ Street address

○ City

○ State

○ Country

○ Postal code

○ Identification number

● One record refers to one person

● Each part is called a field

● We might show (or input) all the fields of a record in a dialog

Data Structures: Record

Common Operations
● Search among many records (e.g.

an array of records)
● Retrieve a record on basis of

values of some fields
● Replace values of some fields

○ Sort records

Common errors
● Write to or retrieve wrong record

or wrong fields
● Store wrong data
● Overflow or underflow

175Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● Linear sequence of variables of the same type.

Each variable in the array is an element.

● Examples

○ a[] is an array of integers, so

■ a[0] and a[1] etc. are all integers

○ b[] is an array of records.

■ b[3].lastName yields the lastName

field associated with record number 3

● Common operations

○ Read, write, sort, change

Data Structures: Array

Common errors

● Read/write past end of

the array

● Read uninitialized data

● Read/write the wrong

element

176Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Like arrays,

● A collection of variables of the same type.

● We can read/write an individual variable, such as a single record in a list of

records.

Unlike arrays,

● The individual variables might be different sizes. For example, lists of

different-length lists.

● Retrieval is not necessarily by element number.

○ Elements in the list are linked to previous/next elements via pointers.

○ Search for match to a field or combination of fields.

● To reach a given element, might have to move through the list until you reach it.

Data Structures: List

Common errors

● Search forward

when relevant

element is behind

current place

● Read/write past end

of list

● Incorrectly specify

or update pointer

to next or previous

element

177Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

We’ll consider only a few:

● Sequence

● Branch

● Loop

● Function (method) call

● Exception

● Interrupt

Control Structures

178Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● A program includes a list of statements.

● If you start executing a sequence, you execute all of its statements.

● Example

Control Structures: Sequence

1
2
3
4

SET A = 5
SET B = 2
INPUT C FROM KEYBOARD
PRINT A + B + C

179Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● The program decides to execute

○ one statement (or sequence)

○ rather than another

○ based on the value of a logical expression (logical

expressions can evaluate to True or False)

● Example:

Control Structures: Branch

1
2
3
4
5
6

INPUT C FROM KEYBOARD

IF (C < 5)
 PRINT C
ELSE
 PRINT “C IS TOO BIG”

Note: “logical expressions” are also often called “Boolean expressions.”

Common errors

● In a complex branch (CASE or a

sequence of IF's), falling through

the branches to an inappropriate

default because a special case was

missed.

● Incorrect branching because the

logical expression is complex and

was misprogrammed

180Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● The program repeats the same set of instructions until an exit

criterion is met.

● Example:

Control Structures: Loop

1
2
3
4
5
6

SET A = 5

WHILE (A < 5) {
 PRINT A
 INPUT A FROM KEYBOARD
}

● The exit criterion is (A ⩾ 5). The loop continues until the user

enters a value ⩾ 5 at the keyboard.

Common errors

● Infinite loop

● Loop exercises one time too many

or too few

● Out of memory

● Huge data files, printouts, emails,

because loop runs unexpectedly

many times

● Too slow because it executes a

poorly-optimized block of code

thousands of times.

181Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

A function (or method or procedure or module) is self-contained.

● Can be called from other parts of the program

● Takes an action and/or returns a value

● Examples:

○ PRINT is the name of a method that sends its input data

to the printer.

○ R = SQUAREROOT (X)

shows a function (SQUAREROOT) that accepts value X as

input and returns the square root of X as a new value for

R.

Control Structures: Function Call

Common errors

● Memory leak

● Unexpectedly changes global data

(or data on disk or data in memory

referenced by address)

● Fails without notifying caller or

caller ignores a failure exit-code

182Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

While executing a command, there is a failure. For example, while

attempting to print, the printer shuts off or runs out of paper.

The Exception returns from the failed task with information about the

failure.

● Example:

Control Structures: Exception

1
2
3
4
5
6
7
8
9

TRY {
 PRINT X
} CATCH (OUT OF PAPER) {
 ALERT USER AND WAIT
 THEN RESUME PRINTING
} CATCH (PRINTER OFF) {
 ABANDON THE JOB
 ALERT USER
}

Other examples

● Divide by zero (invalid calculation)

● Access restricted memory area.

Common error

● Exceptions often leave variables or

stored data in an unexpected

state, files open, and other

resources in mid-use resulting in a

failure later, when the program

next tries to access the data or

resource

183Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● A hardware interrupt causes the processor to
save its state of execution and begin execution of
an interrupt handler. These can occur at any time,
with the program in any state.

● Software interrupts are usually implemented as
instructions that cause a context switch to an
interrupt handler similar to a hardware interrupt.
These occur at a time/place specified by the
programmer.

Interrupts are commonly used for computer multitasking,
especially in real-time computing. Such a system is said to
be interrupt-driven.

Interrupt handlers are code. They can change data,
write to disk, etc.

Control Structures: Interrupt

Examples of hardware interrupts
● Key pressed on keyboard
● Disk I/O error message coming back through the driver
● Clock signals end of a timed delay

Common errors
● Race condition (unexpected processing delay caused
 by diversion of resources to interrupt)
● Stack overflow (interrupt handler stores program state

on the stack—too many nested interrupts might
 blow the stack)
● Deadly embrace: You can't do anything with B until A
 is done, but you can't finish A until you finish servicing
 B's interrupts

184Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Extent of testing of certain attributes or pieces of the software under

test. Example:

● How many statements have we tested?

● Generally, we report a percentage:

○ Number tested, compared to

○ Number that could have been tested.

Coverage

Extent (or proportion) of testing of a given type that

has been completed, compared to the population of possible

tests of this type.

185Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Coverage you can measure by focusing on the control structures of the program. Examples:
● Statement coverage

○ Execute every statement in the program
● Branch coverage

○ Every statement and every branch
● Multi-condition coverage

○ All combinations of the logical expressions

Useful to skim:
● Ammann & Offutt (2008), Introduction to Software Testing
● Jorgensen (2008, 3rd ed), Software Testing: A Craftsman's Approach
● http://www.exampler.com/testing-com/writings/iview1.htm

● http://sqa.fyicenter.com/art/experience_with_the_cost_of_different_coverage_goals_for_testing.html

● http://www.bullseye.com/coverage.html

Structural Code Coverage

http://www.exampler.com/testing-com/writings/iview1.htm
http://sqa.fyicenter.com/art/experience_with_the_cost_of_different_coverage_goals_for_testing.html
http://www.bullseye.com/coverage.html

186Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

IEEE Unit Testing Standard is 100% Statement Coverage and 100%

Branch Execution (IEEE Std. 982.1-1988, § 4.17, “Minimal Unit Test

Case Determination”).

Most companies don’t achieve this (though they might achieve 100%

of the code they actually write).

Several people seem to believe that complete statement and branch

coverage means complete testing. (Or, at least, sufficient testing.)

Structural Coverage

187Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Statement coverage
● Execute every statement in the program
● Tests

○ Enter 4 for A and “HELLO” for B

Structural Coverage: Examples

1
2
3
4
5
6
7
8
9

INPUT A FROM KEYBOARD
INPUT B FROM KEYBOARD

IF (A < 5) {
PRINT A

}
IF (B == “HELLO”) {

PRINT B
}

188Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Branch coverage
● Every statement and every branch
● Tests

○ Enter 4 for A and “HELLO” for B
○ Enter 6 for A and “GOODBYE” for B

An interrupt forces a branch to

the interrupt handler. Can we

seriously claim 100% branch

coverage if we don't test

branches for every interrupt

from every instruction?

(Problem: we probably can't do

all these tests...)

1
2
3
4
5
6
7
8
9

INPUT A FROM KEYBOARD
INPUT B FROM KEYBOARD

IF (A < 5) {
PRINT A

}
IF (B == “HELLO”) {

PRINT B
}

Structural Coverage: Examples

189Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

1
2
3
4
5
6
7
8
9

INPUT A FROM KEYBOARD
INPUT B FROM KEYBOARD

IF (A < 5) {
PRINT A

}
IF (B == “HELLO”) {

PRINT B
}

Structural Coverage: Examples

Multi-condition coverage
● All combinations of the logical expressions:

A 4 4 6 6

B HELLO GOODBYE HELLO GOODBYE

190Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Consider the following program:

A test with A=2 and B=1 will cover:

● every statement

● every branch

However, this testing misses a serious error:

● What test is missing?

● What bug is missed?

In a study by Brian

Marick, 43% of

failures were traced

to faults of omission

(missing code rather

than wrong code)
http://www.exampler.com/

testing-com/writings/

omissions.html

Complete Coverage?

1
2
3

Input A // the program accepts any
Input B // integer into A and B
Print A/B

http://www.exampler.com/testing-com/writings/omissions.html
http://www.exampler.com/testing-com/writings/omissions.html
http://www.exampler.com/testing-com/writings/omissions.html

191Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

The last example shows that even if we obtain “complete coverage” (100% statement or branch or multi-condition coverage), we

can still miss obvious, critical bugs. This is because these measures are blind to many aspects of the software, such as (to name

just a few):

Complete Coverage?

● Unexpected values (e.g. divide by zero)

● Stability of a variable at its boundary values

● Data combinations

● Data flow

● Tables that determine control flow in table-driven code

● Missing code

● Timing

● Compatibility with devices or other software or systems

● Volume or load

● Interactions with background tasks

● Side effects of interrupts

● Handling of hardware faults

● User interface errors

● Compliance with contracts or regulations

● Whether the software actually delivers the benefits or

solves the problems it was intended to deliver/solve

192Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

● There are fine tools for this that are free and easy to use, such

as Emma's Jacoco:

○ https://www.eclemma.org/jacoco/

● Programmers can easily check coverage when they test their

code.

● Black box testers find it hard to check structural coverage.

Good Tools for Structural Coverage

https://www.eclemma.org/jacoco/

193Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Structural coverage looks at the code from only one viewpoint.

Structural coverage might be the only family of coverage measures

you see in programmers’ textbooks or university research papers,

but we’ve seen many other types of coverage in real use.

Coverage assesses the extent (or proportion) of testing of a

given type that has been completed, compared to the

population of possible tests of this type.

Anything you can list, you can assess coverage against.

Other Coverages

 For 101 examples, see Kaner, “Software Negligence & Testing Coverage”,
 https://kaner.com/pdfs/negligence_and_testing_coverage.pdf

Track coverage of the

things that are most

important to your

project, whether

these are the

“standard” coverage

measures or not.

https://kaner.com/pdfs/negligence_and_testing_coverage.pdf

194Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

People optimize what we measure them against, at the expense of

what we don’t measure.

● Driving testing to achieve “high” coverage is likely to yield a

mass of low-power tests.

● Brian Marick discusses this in “How to Misuse Code Coverage,”

http://www.exampler.com/testing-com/writings/coverage.pdf

Coverage as a Measurement

 For more on measurement distortion and dysfunction, read Bob Austin’s book, Measurement and Management of
 Performance in Organizations.

http://www.exampler.com/testing-com/writings/coverage.pdf

195Lecture 4 - Programming Fundamentals and Coverage Copyright © 2022 Altom

Today we took a high-level tour of some of the basic programming

concepts:

● How computers store different types of data

● Binary arithmetic and the challenge of rounding errors in

floating point arithmetic

● Flow of control in the program (control structures)

● Evaluation of the breadth of testing (“coverage”).

Let’s Summarize

196Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Copyright © 2022 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Black Box Software Testing Foundations
Lecture 5
The Impossibility of Complete Testing

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

197Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Course Overview: Fundamental Topics

 1. The Nature of Testing
Overview and Basic Definitions

 2. Why are we testing? What are we trying to learn? How should we organize our work
to achieve this? Information objectives drive the testing mission and strategy

 3. How can we know whether a program has passed or failed a test?
Oracles are heuristic

 4. How can we determine how much testing has been done? What core knowledge
 about program internals do testers need to consider this question?

Coverage is a multidimensional problem

 5. Are we done yet?
Complete testing is impossible

 6. How much testing have we completed and how well have we done it?
Measurement is important but hard

198Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Required

● Doug Hoffman (2003). “Exhausting Your Test Options”,
https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf

● Cem Kaner (1997), “The Impossibility of Complete Testing”, https://kaner.com/pdfs/imposs.pdf

Useful to skim

● Rex Black (2002), “Factors that Influence Test Estimation”,
www.stickyminds.com/sitewide.asp?ObjectId=5992&Function=edetail&ObjectType=ART

● Cem Kaner (1996), “Negotiating Testing Resources: A Collaborative Approach.” https://kaner.com/pdfs/qweek1.pdf

● Mike Kelly, “Estimating testing using spreadsheets”,
https://www.michaeldkelly.com/blog/2007/11/17/estimating-testing-using-spreadsheets.html

Today’s Readings

https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf
https://kaner.com/pdfs/imposs.pdf
http://www.stickyminds.com/sitewide.asp?ObjectId=5992&Function=edetail&ObjectType=ART
https://kaner.com/pdfs/qweek1.pdf
https://www.michaeldkelly.com/blog/2007/11/17/estimating-testing-using-spreadsheets.html

199Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● Last time, we considered some structural coverage

measures and realized that

○ complete coverage doesn’t mean

complete testing.

Coverage

Question:

What do we have to do, to

achieve complete testing?

Answer:

We can’t achieve complete

testing. We might be able to

achieve adequate testing...

200Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● Two tests are distinct if one test would expose a bug that the

other test would miss.

● As we see it, for testing to be truly complete, you would have to:

1. Run all distinct tests.

2. Test so thoroughly that you know there are no bugs left in

the software.

● It should be obvious (but it is not always obvious to every person)

that the first and second criteria for complete testing are

equivalent, and that testing that does not meet this criterion is

incomplete.

● If this is not obvious to you, ask your instructor (or your

colleagues) for help.

Complete Testing

Incomplete Testing

We almost always stop testing before

we know that there are no remaining

bugs. At this point, testing might be

“finished” (we ran out of time), but if

there are still bugs to be found, how

can testing be considered

“complete”?

201Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

`

To test everything, you would have to:

● Test every possible input to every variable (including output variables and

intermediate results variables)

● Test every possible combination of inputs to every combination of variables

● Test every possible sequence through the program

● Test every possible timing of inputs (check for timeouts and races)

● Test every interrupt at every point it can occur

● Test every hardware/software configuration, including configurations of servers not

under your control

● Test for interference with other programs operating at the same time

● Test every way in which any user might try to use the program

Complete Testing

See Cem Kaner (1997), The Impossibility of Complete Testing, https://kaner.com/pdfs/imposs.pdf

https://kaner.com/pdfs/imposs.pdf

202Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

To test everything, you would have to:

● Test every possible input to every variable (including output

variables and intermediate results variables)

● Test every possible combination of inputs to every combination of variables

● Test every possible sequence through the program

● Test every possible timing of inputs (check for timeouts and races)

● Test every interrupt at every point it can occur

● Test every hardware/software configuration, including configurations of servers

not under your control

● Test for interference with other programs operating at the same time

● Test every way in which any user might try to use the program

Complete Testing

Normally, we would

sample the smallest and

largest “valid” values (and

the nearest “invalid”

values). Or, if the values

naturally subdivide into

smaller groups, we’d

sample one from each

group (plus a few

almost-valid values to

check error handling).

203Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● All the “valid” inputs

○ How many valid inputs are there to a function that reads

32 bits from memory as an unsigned integer and takes

the square root?

○ How many valid inputs to a function that reads 64 bits as

an unsigned integer?

● Yes, of course we can sample. (We will often have to.)

○ But optimizations, some calculation errors, and other

special-case handling can go undetected if we don’t check

every possible input.

Test Every Input

204Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Doug Hoffman worked on the MASPAR (the Massively Parallel computer,

64K parallel processors). The MASPAR has several built-in mathematical

functions. The Integer square root function takes a 32-bit word as an input,

interpreting it as an integer (value is between 0 and 232-1). There are

4,294,967,296 possible inputs to this function.

How many should we test? What if you knew this machine was to be

used for mission-critical and life-critical applications?

The MASPAR Example:
Testing the “Valid” Inputs

 See Doug Hoffman (2003). “Exhausting your test options”
 https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf

https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf

205Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Common 32-bit test patterns include:

…

...

0
232-1

20

21

231

(232-1)-1
(232-1)-2

(232-1)-231

00000000000000000000000000000000
11111111111111111111111111111111

00000000000000000000000000000001
00000000000000000000000000000010

10000000000000000000000000000000

11111111111111111111111111111110
11111111111111111111111111111101

01111111111111111111111111111111

MASPAR

 See Doug Hoffman (2003). “Exhausting your test options”
 https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf

https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf

206Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● To test the 32-bit integer square root function, Hoffman checked

all values (all 4,294,967,296 of them). This took the computer

about 6 minutes to run the tests and compare the results to an

oracle.

● There were 2 (two) errors, neither of them near any boundary.

(The underlying error was that a bit was sometimes missed, but

in most error cases, there was no effect on the final calculated

result.) Without an exhaustive test, these errors probably

wouldn’t have shown up.

● What about the 64-bit integer square root? How could we find

the time to run all of these? If we don't run them all, don't we risk

missing some bugs?

MASPAR

● To test all combinations of 32 bits,

there are 232 tests

● These 232 tests required 6 minutes of

testing.

● To test all combinations of 64 bits,

there are 264 tests: 264 = 232 x 232

● For this, we’d need 232 x 6 minutes, i.e.

(24 billion) minutes.

● This is clearly impossible, so we MUST

sample, even though this might cause

us to miss some bugs.

207Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Along with the simple cases, there are other “valid” inputs

● Edited inputs

○ The editing of an input can be quite complex. How much testing of

editing is enough to convince us that no additional editing would trigger

a new failure?

● Variations on input timing

○ Try entering data very quickly, or very slowly. Enter data before, during

and after the processing of some other event, or just as the time-out

interval for this data item is about to expire.

○ In a client-server world (or any situation that involves multiple

processors) consideration of input timing is essential.

Testing Every Input

208Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Normally, we look for boundaries, values at the edge of validity

(almost invalid, or almost valid):

● If an input field accepts 1 to 100, we test with -1 and 0 and 101.

● If a program will multiply two numbers together using integer

arithmetic, we try inputs that, together, will drive the

multiplication just barely above MaxInt, to force an overflow.

● If a program can display a 9-character output field, we look for

inputs that will force the output to be 10 characters.

Invalid Inputs to Individual Variables

209Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

However, there are additional possibilities. For example:

● Extreme values can cause overflows or underflows.

○ An enormous input string might overflow the area

reserved for input, overwriting other data.

○ An empty input string might cause a there’s-no-input

failure such as a null pointer exception.

● These types of errors do happen accidently, but buffer

overflows are also the most commonly exploited vulnerability

by malicious code (or coders).

Invalid Inputs to Individual Variables

And there are

OTHER

possibilities,

like Easter

Eggs.

210Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

“No user would do that” really means “No user I can think of, who I

like, would do that on purpose”.

● Who aren’t you thinking of?

● Who don’t you like who might really use this product?

● What might good users do by accident?

Extreme Values Expose Error-Handling
Weaknesses

Obviously, we

can’t test every

possible invalid

value (there are

infinitely many).

We have to

sample...

211Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

To test everything, you would have to:

● Test every possible input to every variable (including output variables and

intermediate results variables)

● Test every possible combination of inputs to every combination

of variables

● Test every possible sequence through the program

● Test every possible timing of inputs (check for timeouts and races)

● Test every interrupt at every point it can occur

● Test every hardware/software configuration, including configurations of servers

not under your control

● Test for interference with other programs operating at the same time

● Test every way in which any user might try to use the program

Complete Testing

Even if we ignore

invalid variable values,

the number of input

combinations we can

test gets impossibly

large quickly.

Several techniques are

available to guide our

sampling of these

inputs.

212Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● Program printed user-designed calendars

○ Printing to high-resolution printers worked well

○ Displaying to a high-resolution monitor worked well

○ “Print preview” of a high-resolution printout to a

high-resolution monitor crashed Windows

● The variables here are configuration variables: what printer,

what video card, how much memory, etc.

The program worked well with each variable, when we tested

them one at a time. But when we tested them together, the

system crashed.

An Example

213Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Suppose there are K independent variables, V1, V2, ..., VK.

Label the number of choices for the variables as

N1, N2 through NK.

The total number of possible combinations is

N1 x N2 x . . . x NK.

The Basic Combination Rule

214Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Apply the basic rule to our configuration example

● V1 is the type of printer (we’re ignoring printer driver versions). N1 is the

number of printers we want to test. (40 has been realistic on many projects.

We’ve worked on projects with over 500.)

● V2 is the type of video card. N2 is the number of types of video cards we want to

test. (20 or more is realistic.)

● Number of distinct tests = N1 x N2.

The Basic Combination Rule

Suppose we add a

third variable (V3):

how much free

memory is available

In the computer.

Now we have

N1 x N2 x N3 tests

Number of printers Number of video cards Number of tests

2 2 4

3 3 9

5 5 25

40 20 800

215Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Suppose we test

● N1 printers, with

● N2 versions of their printer driver

● N3 video cards, with

● N4 versions of their driver

● N5 amount of free memory

● N6 versions of the operating system

● N7 audio drivers

● N8 mouse drivers

● N9 keyboard drivers

● N10 types of connections to the Net

= N1 x N2 x N3 x N4 x N5 x N6 x N7 x N8 x N9 x N10 distinct tests

The Basic Combination Rule

216Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● Booked a several-segment (several country) trip on American Airlines on a

special deal that yielded a relatively low first-class fare.

● AA prints a string on the ticket that lists all segments and their fares.

● Ticket agents at a busy airport couldn’t print the ticket because the string was

too long. The usual easy workaround was to split up the trip (issue a few tickets)

but in this combination of flights, splitting caused a huge fare change.

● It took nearly an hour of agent time to figure out a ticketing combination that

worked.

It’s Not Just Configuration Testing

● How many variables

are in play here?

● How many

combinations would

you have to test to

discover this problem

and determine

whether it happens

often enough to be

considered serious?

217Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● The normal case when testing combinations of several independent variables is

to adopt a sampling scheme. (After all, we can’t run all these tests.)

● For example, with 40 printers and 20 video cards, you might cut back to 50 tests:

○ One test for every printer (40 tests).

○ Test each video card at least once (test printer and video together, you

still have only 40 tests).

○ Add a few more tests to check specific combinations that have caused

technical support problems for other products.

● Variants on this sampling scheme are common. Some (the combinatorial tests,

such as “all-pairs”) are widely discussed.

○ In our example of 40 printers x 20 video cards x 2 levels of memory,

all-pairs would reduce the 1600 tests to a sample of 800.

Combinations

As with all other

tests, though, any

combination you

don’t test is a

combination that

might trigger a

failure.

218Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

To test everything, you would have to

● Test every possible input to every variable (including output variables and

intermediate results variables)

● Test every possible combination of inputs to every combination of variables

● Test every possible sequence through the program

● Test every possible timing of inputs (check for timeouts and races)

● Test every interrupt at every point it can occur

● Test every hardware/software configuration, including configurations of servers

not under your control

● Test for interference with other programs operating at the same time

● Test every way in which any user might try to use the program

Complete Testing

219Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

A path through a program

● starts at an entry point (you start the program)

● ends at an exit point (the program stops)

A sub-path

● starts and ends anywhere

A sub-path of length N

● starts, continues through N statements, and then stops

Paths and Subpaths

220Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Do task “A”.

“A” might be a single statement

or a block of code or an observable event.

Do task “A” and then do “B” or “C”.

This is a basic branch.

Do task “A” and then do “B”

and then loop back to A.

Some Notation

A

B

C

A

A B

221Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Do task “A”.

“A” might be a single statement

or a block of code or an observable event.

Do task “A” and then do “B” or “C”.

This is a basic branch.

Do task “A” and then do “B”

and then loop back to A.

Some Notation

A

A

A B

C

B

Vocabulary Alert

If we replace the boxes and diamonds

with circles and call them “nodes” and call

the lines “edges,” we have a “directed

graph.” Directed graphs have useful

mathematical properties for creating

test-supporting models (e.g. state models).

For a detailed introduction written for

testers, read Paul Jorgensen’s (2008)

Software Testing: A Craftsman’s Approach

(3rd Ed.)

222Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

This is based on an example

from Richard Bender.

Let’s Analyze a Graph

Start

A

B C

D E

F

G

Exit

223Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

We can achieve 100% branch coverage (all

statements, all branches) by testing two paths:

● A, B, C, D, F, G

● A, B, D, E, G

Are we missing anything?

Let’s Analyze a Graph

A

B C

D E

F

G

Exit

A

B C

D E

F

G

Exit

Start Start

224Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

A data flow captures two events.

1. We set a variable to a value

2. We use the value

We call this a “Set-Use Pair”

 This means “Set X = 5”

This means the program will read/use the

value of X (which is 5)

Data Flows

A

B C

D E

F

G

Exit

X=5

X=5

X=5

X=5

Start

225Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Consider the possible data flows. We’ll SET the

value of X at various points and then print X at G.

Here’s our first of the two “complete-coverage”

tests. The last place where X is set is at C, so at G,

X=7.

Data Flows

A

B C

D E

F

G

Exit

X=5

X=7

X=9

X=7

Start

226Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Here’s our second of the complete-coverage tests:

● This time, the last place to set a value for X is E,

so G gets a 9.

Data Flows

X=5

X=7

X=9

X=9

A

B C

D E

F

G

Exit

Start

227Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

We’ve now tested all statements and all branches.

In doing so, we’ve tested the Set-Use pair (C, G)

and the Set-Use pair (E, G).

But where is the data flow from A to G?

Data Flows

A

B C

D E

F

G

Exit

X=5

X=7

X=9

X=7

X=5

X=7

X=9

X=9

A

B C

D E

F

G

Exit

Start Start

228Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

A

B C

D E

F

G

Exit

X=5

X=7

X=9

X=5

To test that third data flow, we need to test a third

path. This one will do it.

Data Flows

Start

229Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

When you test data flows, it's not enough to set X and use it.

You must consider how X is used:

● What does the program do with X?

● What values of X might be troublesome for that use?

● Does the program use X in combination with other variables?

● What values of X would be troublesome with those variables?

● Does the program based another variable on X or on a

calculation that uses X? What trouble can that variable cause?

Test the consequences of the use.

Data Flows: Caution

230Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Complete Testing

We’re still in the

middle of this

every-possible-

sequence

analysis.

To test everything, you would have to

● Test every possible input to every variable (including output variables and

intermediate results variables)

● Test every possible combination of inputs to every combination of variables

● Test every possible sequence through the program

● Test every possible timing of inputs (check for timeouts and races)

● Test every interrupt at every point it can occur

● Test every hardware/software configuration, including configurations of servers

not under your control

● Test for interference with other programs operating at the same time

● Test every way in which any user might try to use the program

231Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Next Example

This example shows

there are too many

paths to test in even a

fairly simple program.

This is from Myers,

The Art of Software

Testing.

B

AA

E

D

F

H

I

G
X ExitAC

232Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

B

A

E

D

F

H

I

G
X ExitAC

There are 5 ways to get from A to X. One of them is A→B→X→EXIT.

233Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

A

E

D

F

H

I

G
X ExitC

B

A second path is A→C→D→F→X→EXIT.

234Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

A

E

D

F

H

I

G
X ExitC

B

Third: A→C→D→G→X→EXIT.

235Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

A

E

D

F

H

I

G
X ExitC

B

Fourth: A→C→E→H→X→EXIT.

236Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

A

E

D

F

H

I

G
X ExitC

B

Fifth: A→C→E→I→X→EXIT.

There are 5 ways to get from A to EXIT if you go through X only once.

237Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

A

E

D

F

H

I

G
X ExitC

B

But you can go through X more than once.

Here’s another path: A→C→E→H→X→A→B→X→EXIT.

238Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

< 20 times

through the loop

Sequences

A

E

D

F

H

I

G
X ExitC

B

There are 5 ways to get to X the first time, 5 more to get back to X the second time, so there are 5 x 5 = 25 cases for reaching

EXIT by passing through X twice.

239Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

There are

● 5 ways to get to X once, then EXIT

● 5 x 5 ways to get to X twice, then EXIT

● 5 x 5 x 5 ways to get to X three times, then EXIT

In total, there are 51 + 52 + ... + 519 + 520 = (approximately)

1014 = 100 trillion paths through the program. (This applies

the combination formula we looked at before. With

variables V1, V2, etc., the number of combination tests is N1

x N2 x ... etc.)

Sequences
Analyzing Myers’ Example

Obviously, we can’t test all these

paths, so we need to select a sample.

A typical sample would probably

include all 5 tests that get to EXIT

once, at least one test that goes to

EXIT all 20 times, an attempt to hit

EXIT 21 times, and test that check the

pairs

● (pass through B, pass through F)

● (pass through G, pass through H

and so on.)

240Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Sequences

Each time it hits F, it ties up more memory. If you tie up enough memory, the system crashes. Every time the program hits B,

it cleans up memory, so the crash happens only if the program hits F several times without a B in its sequence.

< 20 times

through the loop

B

AA

E

D

F

H

I

G
X ExitAC

Cleanup

Memory Leak

Suppose the program
has a memory leak.

241Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

This example is often treated as “academic” (purely theoretical), but

this kind of problem can definitely show up in real life.

Here’s a bug I ran into as a programmer,

developing a phone system...

Sequences
Analyzing Myers’ Example

242Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Telenova Station Set 1. Integrated voice and

data. 108 voice features, 110 data features.

1984.

Phone System: The Telenova Stack Failure

Telenova Station Set Desktop Telephone, 1982
Cooper Hewitt, Smithsonian Design Museum

https://collection.cooperhewitt.org/objects/18648527

https://collection.cooperhewitt.org/objects/18648527

243Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

July 4 12:01 PM EXT: 257
Directory Admin Messages Voice Data

1-(212)662-777 Connected EXT: 567
Transfer Record Conference Park ACCT

Please enter selection
LvMsg GetMsg Greeting Code

Ted K. waiting Wt:1 Hd:0
I’llCall CallLater PlsWait Answ

Context-sensitive display

10-deep hold queue

10-deep wait queue

The Telenova Stack Failure

Select a call & lift handset Wt:5 Hd:5
Ted K. Peter T. Trunk 6 Trk 2 Trk 7

Xenix 3 Connecter for data
Transfer Baud EndCall Park ACCT

244Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

● Beta customer (a stock broker) reported random failures

● Could be frequent at peak times

● One phone would crash and reboot, then other phones

crashed while the first rebooted

● On a particularly busy day, service was disrupted all (East

Coast) afternoon

● We were mystified:

○ All individual functions worked

○ We had tested all statements and branches

The Telenova Stack Failure

245Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

The Telenova Stack Failure
A Simplified State Diagram Showing the Bug

Idle

Ringing

Connected

On Hold

You Hung Up

Caller Hung Up

246Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

The Telenova Stack Failure

Idle

Ringing

Connected

On Hold

You Hung Up

Caller Hung Up

247Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Ultimately, we found the bug in the hold queue

● Up to 10 calls on hold, each adds record to the stack

● Initially, the system checked the stack when any call was added or removed, but

this took too much system time. So we dropped our checks and added these

○ Stack has room for 20 calls (just in case)

○ Stack reset (forced to zero) when we knew it should be empty

● The error handling made it almost impossible for us to detect the problem in

the lab. Because a user couldn’t put more than 10 calls on the stack (unless she

knew the magic error), testers couldn’t get to 21 calls to cause the stack

overflow.

The Telenova Stack Failure

248Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Sequences

< 20 times

through the loop

B

AA

E

D

F

H

I

G
X ExitAC

Idle

Caller hangs up

The stack bug was just like this program, with a garbage collector at B (the idle state) and a stack leak at F (hang up from hold).

If you hit F N times without touching B, when you try to put a 21-Nth call on hold, you overflow the stack and crash.

249Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

This example illustrates several important points:

● Simplistic approaches to path testing can miss critical defects.

● Critical defects can arise under circumstances that appear (in a

test lab) so specialized that you would never intentionally test

for them.

● When (in some future course or book) you hear a new

methodology for combination testing or path testing, we want

you to test it against this defect. If you had no suspicion that

there was a stack corruption problem in this program, would

the new method lead you to find this bug?

The Telenova Stack Failure

250Lecture 5 - The Impossibility of Complete Testing Copyright © 2022 Altom

Testers live and breathe tradeoffs.

The time needed for test-related tasks is infinitely larger than the time available.

Time you spend on
● Analyzing, troubleshooting, and effectively describing a failure

Is time no longer available for
● Designing tests
● Documenting tests
● Executing tests
● Automating tests
● Reviews, inspections
● Supporting tech support
● Retooling
● Training other staff

Summing Up

251Lecture 6 - Measurement Copyright © 2022 Altom

Copyright © 2022 Altom Consulting. This material is based on BBST Foundations, a CC Attribution licensed lecture by Cem

Kaner and James Bach, available at http://testingeducation.org/BBST. This work is licensed under the Creative Commons with

Attribution - ShareAlike. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Cem Kaner J.D., PH.D.

Professor Emeritus, Software Engineering, Florida Institute of Technology

Black Box Software Testing Foundations
Lecture 6
Measurement

http://testingeducation.org/BBST
http://creativecommons.org/licenses/by-sa/2.0/

252Lecture 6 - Measurement Copyright © 2022 Altom

Course Overview: Fundamental Topics

 1. The Nature of Testing
Overview and Basic Definitions

 2. Why are we testing? What are we trying to learn? How should we organize our work
to achieve this? Information objectives drive the testing mission and strategy

 3. How can we know whether a program has passed or failed a test?
Oracles are heuristic

 4. How can we determine how much testing has been done? What core knowledge
 about program internals do testers need to consider this question?

Coverage is a multidimensional problem

 5. Are we done yet?
Complete testing is impossible

 6. How much testing have we completed and how well have we done it?
Measurement is important but hard

253Lecture 6 - Measurement Copyright © 2022 Altom

Required

● Cem Kaner & Walter P. Bond (2004), ”Software Engineering Metrics: What Do They Measure and How Do We Know?”
https://kaner.com/pdfs/metrics2004.pdf

Useful to skim

● Robert Austin (1996), Measurement and Management of Performance in Organizations.

● Michael Bolton (2009), ”Meaningful Metrics”, http://www.developsense.com/blog/2009/01/meaningful-metrics/

● Doug Hoffman (2000), ”The Darker Side of Software Metrics”,
https://bbst.courses/wp-content/uploads/2022/08/Hoffman_DarkerSideMetrics.pdf

● Erik Simmons (2000), ”When Will We Be Done Testing? Software Defect Arrival Modelling with the Weibull Distribution”,
https://bbst.courses/wp-content/uploads/2022/08/Simmons_Weibull.pdf

Today’s Readings

https://kaner.com/pdfs/metrics2004.pdf
http://www.developsense.com/blog/2009/01/meaningful-metrics/
https://bbst.courses/wp-content/uploads/2022/08/Hoffman_DarkerSideMetrics.pdf
https://bbst.courses/wp-content/uploads/2022/08/Simmons_Weibull.pdf

254Lecture 6 - Measurement Copyright © 2022 Altom

We seem to be asking quantitative questions, or

questions that can be answered by traditional,

quantitative research, such as:

● How much testing have we done?

● How thorough has our testing been?

● How effective has our testing been?

Are we meeting our information objectives? Do we need

to adopt a different strategy?

● How much testing is enough?

● Are we done yet?

What Brings Us to this Topic?

These are important questions. But

they are difficult. We can’t teach you

how to answer them today.

(We’re working on that course...)

We can introduce you to the reasons

that the popular, simplistic measures

are often dysfunctional.

255Lecture 6 - Measurement Copyright © 2022 Altom

● It’s not about counting things, it’s about estimating the value of something.

● We don’t count bugs because we care about the total number of bugs. We

count bugs because we want to estimate:

○ the thoroughness of our testing, or

○ a product’s quality, or

○ a product’s reliability, or

○ the probable tech support cost, or

○ the skill or productivity of a tester, or

○ the incompetence of a programmer, or

○ the time needed before we can ship the

○ product, or

○ something else (whatever it is)...

Basics of Measurement

256Lecture 6 - Measurement Copyright © 2022 Altom

Measurement is the empirical, objective assignment of numbers to

attributes of objects or events (according to a rule derived from a

model or theory) with the intent of describing them.

Measurement

Kaner & Bond discussed

several definitions of

measurement in

Software engineering

metrics: What do they

measure & how do we

know?

https://kaner.com/

pdfs/metrics2004.pdf

https://kaner.com/pdfs/metrics2004.pdf
https://kaner.com/pdfs/metrics2004.pdf

257Lecture 6 - Measurement Copyright © 2022 Altom

● The ATTRIBUTE: the thing you want to measure.

● The INSTRUMENT: the thing you use to take a measurement.

● The READING: what the instrument tells you when you use it to measure

something.

● The MEASURED VALUE or the MEASUREMENT is the READING.

● The METRIC: the function that assigns a value to the attribute, based on the

reading.

● We often say METRIC to refer to the READING or the SCALE.

Measurements Include

If you’re not sure

what you’re trying

to measure, you

probably won’t

measure it very

well.

258Lecture 6 - Measurement Copyright © 2022 Altom

● Attribute: Width of the projector screen

● Instrument: Tape measure

● Reading: 40 inches (from the tape measure)

● Metric: inches on tape = inches of width

Measurement: Trivial Case

259Lecture 6 - Measurement Copyright © 2022 Altom

Even simple measurements have complexities:

● Measurement error (random variation in reading the tape)

● Precision of the measurement (inches? miles?)

● Purpose of the measurement

● Scope of the measurement (just this one screen?)

● Scale of the measurement (what you can read off the tape)

Measurement: Trivial Case

260Lecture 6 - Measurement Copyright © 2022 Altom

● Measure the same thing 100 times and you’ll get 100

slightly different measurements.

● Frequently, the distribution of measurement errors is

Gaussian (a.k.a. Normal).

Measurement Error

https://commons.wikimedia.org/wiki/File:Normal_distribution_pdf.png

https://commons.wikimedia.org/wiki/File:Normal_distribution_pdf.png

261Lecture 6 - Measurement Copyright © 2022 Altom

What are the units on your measuring instrument?

● inches? yards?

● if your tape measure has a mark every mile (like mile markers

on the highway), do you think your measurements will be

accurate to the nearest inch?

● how accurate is your measurement of a 1 mile road:

○ measured in inches with a 36-inch yardstick

■ high precision, but

■ high measurement error

Precision of Measurement

262Lecture 6 - Measurement Copyright © 2022 Altom

Why do you care how wide the projector screen is?

● estimate the size of text that will appear on the screen and

thus its visibility?

● decide whether it will fit in your truck?

● reserve a room that isn’t too small for the screen?

● estimate and control manufacturing error?

● chastise someone for ordering a screen that is too big or too

small?

To control manufacturing error (width of the screen), you usually

want high consistency and precision of measurements.

Purpose of This Measurement

Try using a

”five-why”

analysis to figure

out your underlying

purpose.

http://en.wikipedia.org

/wiki/5_Whys

http://en.wikipedia.org/wiki/5_Whys
http://en.wikipedia.org/wiki/5_Whys

263Lecture 6 - Measurement Copyright © 2022 Altom

● Just this one screen?

● Just screens in this building?

● Just screens from this manufacturer?

● Just screens manufactured this year?

As the scope broadens, the more variables come into play,

introducing more causes for measurement error.

Scope of Measurement

264Lecture 6 - Measurement Copyright © 2022 Altom

The ”scale” attaches meaning to the number.

For example, we can read ”40” from the tape measure, but that doesn't tell us much:

40 what?

In this case, our scale is ”inches.”

We know several things about inches:

● We have an agreed standard for how long an inch is. We can check a tape

measure against that standard.

● Every inch is the same as every other inch. They are all the same length.

● Three inches is three times as long as one inch.

Scale of Measurement

265Lecture 6 - Measurement Copyright © 2022 Altom

It is easy to count things, but unless we have a model that:

● maps the count to a scale, and

● maps that scale to the scale of the the underlying attribute

we won't know how to interpret the count. It will just be a number.

Scale of Measurement

Decibels

(physical

measurement)

What is the unit of measurement?

What are our sound-inches?

How much bigger is 6 than 3?

Is a 6 twice as loud as a 3?

Rates loudness

266Lecture 6 - Measurement Copyright © 2022 Altom

Ratio Scale: a / b = (k * a) / (k * b) (for any constant, k)

e.g., the tape measure

20 inches / 10 inches = 200 inches / 100 inches.

● “An absolute zero is always implied”

Scale of Measurement

See S.S. Stevens (1946), ”On the theory of scales of measurement”, Science,
https://psychology.okstate.edu/faculty/jgrice/psyc3214/Stevens_FourScales_1946.pdf

https://psychology.okstate.edu/faculty/jgrice/psyc3214/Stevens_FourScales_1946.pdf

267Lecture 6 - Measurement Copyright © 2022 Altom

Interval Scale: a - b = (k + a) - (k + b)

e.g., Fahrenheit or Centigrade temperatures

● These have no true zero, so ratios are meaningless

○ 100° Fahrenheit = 37.8° Centigrade

○ 50° Fahrenheit = 10.0° Centigrade

○ 100 / 50 ≠ 37.8 / 10

● But intervals are meaningful

○ The difference in temperature between 100 and 75 Fahrenheit is the

same as the difference in temperature between 75 and 50 (25°

Fahrenheit and 13.9° Centigrade) in each case.

● We can have an interval scale when we don’t have (don’t know/use) true zero

(compare to Kelvin temperature scale, which has true zero).

Scale of Measurement

Multiplying

interval-scale numbers

is meaningless.

(A product of two

interval-scale numbers

has no unambiguous

mathematical

meaning.)

268Lecture 6 - Measurement Copyright © 2022 Altom

Ordinal Scale: If a > b and b > c, then a > c

e.g. winners of a race or a cooking contest

● 1st place is better than 2nd place.

● 2nd place is better than 3rd place.

● How much better?

○ Better.

Scale of Measurement

Adding or

multiplying

ordinal-scale

numbers is

meaningless.

269Lecture 6 - Measurement Copyright © 2022 Altom

Nominal Scale: a = b (a and b have the same name) if and only if a and b are the same

e.g. names of people or companies

● Joe is Joe.

● Joe is not Susan.

● If Joe runs in a race and has a ”2” on his back, that doesn't mean he is faster or

slower than Susan (she has a ”1” on her back). It just means that

○ Joe has the label ”1”,

○ Susan has the label ”2”.

Scale of Measurement

Ranking or adding

or multiplying

nominal-scale

numbers is

meaningless.

270Lecture 6 - Measurement Copyright © 2022 Altom

Relationship between attributes and measuring instruments are often not

straightforward. Some Attributes:

● quality

● reliability

● productivity

● supportability

● size of a program

● predicted schedule

● speed of a program

● predicted support cost

● complexity of a program

● extent of testing done so far

● quality of testing done so far

● completeness of development

Non-Trivial Measurement

What’s the tape

measure for

this attribute?

271Lecture 6 - Measurement Copyright © 2022 Altom

● The ATTRIBUTE: the thing you want to measure.

● The INSTRUMENT: the thing you use to take a measurement.

● The READING: what the instrument tells you when you use it to measure

something.

● The MEASURED VALUE or the MEASUREMENT is the READING.

● The METRIC: the function that assigns a value to the attribute, based on the

reading.

● We often say METRIC to refer to the READING or the SCALE.

Measurements Include

If you don’t know what

you’re trying to

measure, you won’t

measure it well.

And you can do a lot of

damage in the process.

272Lecture 6 - Measurement Copyright © 2022 Altom

Construct validity:

● Does this measure what I think it measures?

○ Does this measure the attribute?

○ (Social scientists often say ”construct” where I say ”attribute”)

● Most important type of validity

● Widely discussed in measurement theory

○ But our field routinely skips the question, ”what is the attribute”

○ search ACM’s Digital Library or IEEE portal for ”construct validity” or

”measurement validity”

Construct Validity
(Measurement Validity)

Valid metrics are

extremely useful.

Invalid metrics

cause dysfunction.

273Lecture 6 - Measurement Copyright © 2022 Altom

”Many of the attributes we wish to study do not have generally agreed

methods of measurement. To overcome the lack of a measure for an

attribute, some factor which can be measured is used instead. This

alternate measure is presumed to be related to the actual attribute

with which the study is concerned. These alternate measures are

called surrogate measures.”

Surrogate (or Proxy) Measures

See Johnson, M.A. (1996) Effective and Appropriate Use of Controlled Experimentation in Software Development Research, Master's Thesis (Computer
Science), Portland State University, https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=6361&context=open_access_etds

A widely used

opportunity

for disaster

https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=6361&context=open_access_etds

274Lecture 6 - Measurement Copyright © 2022 Altom

Example

● We don’t know how to measure tester productivity

● So let’s count bugs

○ Bugs are our surrogate for productivity

○ We assume that they must be correlated with

productivity

○ And they’re easy to count

Surrogate (or Proxy) Measures

275Lecture 6 - Measurement Copyright © 2022 Altom

If we reward testers based on their bug counts, how much time will

testers spend:

● Documenting their tests?

● Coaching other testers?

● Researching and polishing bug reports to make their bug

easier to understand, assess and replicate?

● Running confirmatory tests (such as regression tests) that have

control value (e.g. build verification) but little bug-find value?

● Hunting variants of the same failure to increase bug count?

Predictable Mischief...

Using surrogate

measures can make

things worse, while

providing little useful

information.

Yet, the ease of using

them makes them

quite popular.

276Lecture 6 - Measurement Copyright © 2022 Altom

People optimize what we measure them against, at the expense of what we don’t

measure.

● Driving testing to achieve ”high” coverage is likely to yield a mass of low-power

tests.

● Brian Marick discusses this in ”How to Misuse Code Coverage”,

http://www.exampler.com/testing-com/writings/coverage.pdf

● What other side-effects might we expect from relying on coverage numbers as

measures of how close we are to completion of testing?

● How is this different from using coverage measures to tell us how far we are

from an adequate level of testing?

We’ve Seen This Before
(Coverage)

For more on measurement distortion and dysfunction,
read Bob Austin’s book, Measurement and Management of Performance in Organizations.

http://www.exampler.com/testing-com/writings/coverage.pdf

277Lecture 6 - Measurement Copyright © 2022 Altom

● Some people think the Weibull reliability model can be applied

as model of testing progress.

● They estimate likely ship date by using bug-find rates to

estimate parameters of the Weibull curve.

Another Example of Bug Counting

278Lecture 6 - Measurement Copyright © 2022 Altom

The Weibull Curve

Related measures:

● Bugs still open

(each week)

● Ratio of bugs

found to bugs

fixed (per week)B
ug

s
pe

r
W

ee
k

Week

New bugs found per week (”Defect arrival rate”)

279Lecture 6 - Measurement Copyright © 2022 Altom

These assumptions are wildly implausible as models of testing:

● Testing occurs in a way similar to the way the software will be operated.

● All defects are equally likely to be encountered.

● Defects are corrected instantaneously, without introducing additional defects.

● All defects are independent.

● There is a fixed, finite number of defects in the software at the start of testing.

● The time to arrival of a defect follows the Weibull distribution.

● The number of defects detected in a testing interval is independent of the number

detected in other testing intervals for any finite collection of intervals.

See Erik Simmons (2000), ”When Will We Be Done Testing? Software Defect Arrival

Modeling with the Weibull Distribution.”

https://bbst.courses/wp-content/uploads/2022/08/Simmons_Weibull.pdf

Weibull Model Assumptions

https://bbst.courses/wp-content/uploads/2022/08/Simmons_Weibull.pdf

280Lecture 6 - Measurement Copyright © 2022 Altom

● An advocate of this approach asserts:

”Luckily, the Weibull is robust to most violations.”

● From a purely curve-fitting point of view, this is correct: The

Weibull distribution has a shape parameter that allows it to take

a very wide range of shapes. If you have a curve that generally

rises then falls (one mode), you can approximate it with a

Weibull.

The Weibull Model

281Lecture 6 - Measurement Copyright © 2022 Altom

This illustrates the use of surrogate measures

● we don’t have an attribute description or model for the

attribute we really want to measure,

● so we use something else, that is convenient, and allegedly

”robust,” in its place.

The Weibull Model

282Lecture 6 - Measurement Copyright © 2022 Altom

When development teams are pushed to show project bug curves that look like the

Weibull curve, they are pressured

● to show a rapid rise in their bug counts,

● an early peak,

● and a steady decline of bugs found per week.

Under the model, a rapid rise to an early peak predicts a ship date much sooner than a

slower rise or a more symmetric curve. In practice, project teams (including testers) in

this situation often adopt dysfunctional methods, doing things that will be bad for the

project over the long run in order to make the numbers go up quickly.

Side Effects (the Predictable Mischief)
of Bug Curves

For more observations of problems like these in reputable software companies, see Doug Hoffman, ”The Dark Side of
Software Metrics”, https://bbst.courses/wp-content/uploads/2022/08/Hoffman_DarkerSideMetrics.pdf

https://bbst.courses/wp-content/uploads/2022/08/Hoffman_DarkerSideMetrics.pdf

283Lecture 6 - Measurement Copyright © 2022 Altom

Early testing:

● Run tests of features known to be broken or incomplete.

● Run multiple related tests to find multiple related bugs.

● Look for easy bugs in high quantities rather than hard bugs.

● Less emphasis on

○ infrastructure,

○ automation architecture,

○ tools and documentation.

● More emphasis on bug finding. (Short term payoff but long

term inefficiency.)

What Is the Predictable Mischief?

The goal is to find

lots of bugs early.

Get to that peak

in the curve right

away.

284Lecture 6 - Measurement Copyright © 2022 Altom

After we get past the peak, the expectation is that testers will find fewer bugs each week

than they found the week before. Based on the number of bugs found at the peak, and

the number of weeks it took to reach the peak, the model can predict bugs per week in

each subsequent week.

After the Peak

B
ug

s
pe

r
W

ee
k

Week

285Lecture 6 - Measurement Copyright © 2022 Altom

Later in the project:
● Run lots of already-run regression tests
● Don’t look as hard for new bugs
● Shift focus to status reporting
● Classify unrelated bugs as duplicates
● Close related bugs as duplicates, hiding key data about the symptoms/causes of

a problem
● Postpone bug reporting until after a measurement checkpoint (milestone)

(Some bugs are lost)
● Programmers ignore bugs until testers report them
● Testers report bugs informally, keep them out of the tracking system
● Project team sends testers to irrelevant tasks before measurement checkpoints
● More bugs are rejected, sometimes taken personally

We expect fewer bugs every week.

More Predictable Mischief

286Lecture 6 - Measurement Copyright © 2022 Altom

Bad Models Are Counterproductive
B

ug
s

pe
r

W
ee

k

Week

Shouldn’t we strive for this?

287Lecture 6 - Measurement Copyright © 2022 Altom

People optimize what we measure them against, at the expense of what we don’t

measure.

● A measurement system yields distortion if it creates incentives for a person to

make the measurements look better rather than to optimize for achieving the

organization's actual goals.

● A system is dysfunctional if optimizing for measurement yields so much

distortion that the result is a reduction of value: the organization would have

been better off with no measurement than with this measurement.

Distortion and Dysfunction

For more on measurement distortion and dysfunction, read Bob Austin’s book,
Measurement and Management of Performance in Organizations.

288Lecture 6 - Measurement Copyright © 2022 Altom

● Measuring the effectiveness of testing by counting bugs is

fundamentally flawed. Therefore measuring the effectiveness

of a testing strategy by bug counts is probably equally flawed.

● Measuring code coverage not only misleads us about how

much testing there has been. It also creates an incentive for

programmers to write trivial tests.

● Measuring progress via bug count rates not only misleads us

about progress. It also drives test groups into dysfunctional

conduct.

Recap: Three Examples

289Lecture 6 - Measurement Copyright © 2022 Altom

● This is a difficult, unsolved problem

● General recommendations

● Details to come in later courses

Imagine evaluating employee performance:

● Break down the job into a list of key tasks.

● For each of this person’s key tasks, take a small sample (10?) of this person’s work.

● Carefully evaluate each type of work, looking at the details.

● Then you can rank performance, or assign metric summary numbers to the

individual tasks.

● And combine ratings across tasks for an employee profile.

We’ll study an example of task evaluation in the Bug Advocacy course.

What Should We Do?

	Lecture 1
	Notice
	About Cem Kaner
	About James Bach
	About Rebecca L. Fiedler
	Many Thanks...
	Our Approach
	BBST Learning Objectives
	Foundations Course Objectives
	Instructional Approach
	Course Overview: Fundamental Topics
	What’s a Computer Program
	What Are We Really Testing For?
	Software Error (AKA Bug)
	Software Testing
	Testing Is Always a Search for Information
	There Are No “Correct” Definitions
	We Use “Working Definitions”
	Black Box Testing
	Glass Box Testing
	Grey Box Testing?
	Are These “Techniques”?
	Behavioral Testing
	Structural Testing
	Unit, Integration & System Testing
	Implementation-Level vs. System-Level
	Functional & Parafunctional
	Acceptance Testing #1
	Acceptance Testing #2
	Independent Testing
	Quiz Standards, Rules & Tips
	Sample Quiz Question
	About the Exam

	Lecture 2
	Course Overview: Fundamental Topics
	Today’s Readings
	What Is Software Testing?
	Software Testing
	Defining Testing
	Many Different Information Objectives
	Your Testing Mission
	Your Testing Mission(s)
	Testing Strategy
	Strategy and Design
	Two Examples of Test Techniques
	Test Techniques (Bach)
	Domain Testing Illustrates the Components of the Recipe
	Review
	A “Typical” Context
	A “Typical” Context: Typical Group
	A “Typical” Context: Typical Tasks
	A “Typical” Context: Tasks Over Time
	A “Typical” Context: Less Common Tasks
	Missions (In-House)
	Change of Context: In-House IT?
	Change of Context: External Lab

	Lecture 3
	Course Overview: Fundamental Topics
	Today’s Readings
	Once Upon A Time...
	A Little More Terminology
	Oracle
	The Need for Judgement
	Can You Specify Your Test Configuration?
	A Model of a System Under Test
	Reference Programs Have Limited Values Based on Notes From Doug Hoffman
	Our Observations Can Fail in Many Ways
	A Program Can Fail in Many Ways
	An Oracle Is a Heuristic
	Mainstream Engineering Relies Fundamentally on Heuristics
	Testing Is About Ideas. Heuristics Give You Ideas
	Fallible Decision Rules
	Oracles & Test Automation
	Does Font Size Work in Open Office?
	OK, So What About WordPad?
	Compare WordPad to Word
	Now That We See a Difference ...
	Risk As a Simplifying Factor
	What Evaluation Criterion?
	Review
	Consistency Oracles
	Use Consistency Oracles for Test Reporting
	Consistency Oracles Often Require Research
	Use Consistency Oracles
	Another Look at Oracles Based on Notes from Doug Hoffman
	More Types of Oracles Based on Notes from Doug Hoffman
	More Types of Oracles Based on Notes from Doug Hoffman And Michael Bolto
	More Types of Oracles Based on Notes from Doug Hoffman
	Models
	What Might We Model in an Oracle?
	Guides in Creating a Model
	What Makes These Models, Models?
	More Types of Oracles Based on Notes from Doug Hoffman
	Summing Up
	About the Exam

	Lecture 4
	Course Overview: Fundamental Topics
	Today’s Readings
	Computing Fundamentals
	How Do Computers Store Data?
	Decimal Numbers
	Adding Decimal Numbers
	Overflow
	Even Bigger Numbers
	Overflow
	We Can Also Represent Fractions
	Fixed Point Representation
	Floating Point
	Overflow and Floating Point
	Overflow, Floating Point and Rounding
	Significant Digits and Precision
	Overflow, Floating Point and Rounding
	Floating Point and Rounding Error
	Binary Numbers
	Binary Arithmetic
	Bytes (8 Bits)
	Adding Binary Numbers
	Overflow
	Unsigned Versus Signed
	8, 16, 32 & 64-Bit Words
	Words
	Integers
	Integers: Java
	Floating Point (Single Precision)
	Floating Point (Double Precision)
	Hexadecimal Numbers
	Alphanumeric Representation: ASCII
	Same Data, Different Meanings
	Data Structures
	Data Structures: String
	Data Structures: Record
	Data Structures: Array
	Data Structures: List
	Control Structures
	Control Structures: Sequence
	Control Structures: Branch
	Control Structures: Loop
	Control Structures: Function Call
	Control Structures: Exception
	Control Structures: Interrupt
	Coverage
	Structural Code Coverage
	Structural Coverage
	Structural Coverage: Examples
	Structural Coverage: Examples
	Structural Coverage: Examples
	Complete Coverage?
	Good Tools for Structural Coverage
	Other Coverages
	Coverage as a Measurement
	Let’s Summarize

	Lecture 5
	Course Overview: Fundamental Topics
	Today’s Readings
	Coverage
	Complete Testing
	Test Every Input
	The MASPAR Example: Testing the “Valid” Inputs
	MASPAR
	Testing Every Input
	Invalid Inputs to Individual Variables
	Extreme Values Expose Error-Handling Weaknesses
	Complete Testing
	An Example
	The Basic Combination Rule
	It’s Not Just Configuration Testing
	Combinations
	Complete Testing
	Paths and Subpaths
	Some Notation
	Let’s Analyze a Graph
	Data Flows
	Data Flows: Caution
	Complete Testing
	Next Example
	Sequences
	Sequences Analyzing Myers’ Example
	Phone System: The Telenova Stack Failure
	The Telenova Stack Failure
	The Telenova Stack Failure A Simplified State Diagram Showing the Bug
	Sequences
	The Telenova Stack Failure
	Summing Up

	Lecture 6
	Course Overview: Fundamental Topics
	Today’s Readings
	What Brings Us to this Topic?
	Basics of Measurement
	Measurement
	Measurements Include
	Measurement: Trivial Case
	Measurement Error
	Precision of Measurement
	Purpose of This Measurement
	Scope of Measurement
	Scale of Measurement
	Non-Trivial Measurement
	Measurements Include
	Construct Validity (Measurement Validity)
	Surrogate (or Proxy) Measures
	Predictable Mischief...
	We’ve Seen This Before (Coverage)
	Another Example of Bug Counting
	The Weibull Curve
	Weibull Model Assumptions
	The Weibull Model
	Side Effects (the Predictable Mischief) of Bug Curves
	What Is the Predictable Mischief?
	After the Peak
	More Predictable Mischief
	Bad Models Are Counterproductive
	Distortion and Dysfunction
	Recap: Three Examples
	What Should We Do?

